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TeachingDemos-package Various functions for demonstration and learning.

Description

This package provides various demonstrations that can be used in classes or by individuals to better
learn statistical concepts and usage of R. Various utility functions are also included

Details

Package: TeachingDemos
Type: Package
License: Artistic-2.0

Demonstration functions in this package include:

ci.examp, run.ci.examp Confidence Interval Examples
clt.examp Central Limit Theorem Example
dice, plot.dice Roll and Plot dice (possibly loaded)
faces, faces2 Chernoff face plots
fagan.plot Fagan plot for screening designs
lattice.demo The 3d slicing idea behind lattice/trellis graphics
loess.demo Interactive demo to show ideas of loess smooths
mle.demo Interactive demo of Maximum Likelihood Estimation
plot.rgl.coin, plot.rgl.die Animate flipping a coin or rolling a die
power.examp Demonstrate concepts of Power.



4 TeachingDemos-package

put.points.demo Add/move points on a plot and see the effect on correlation and regression.
roc.demo Interactive demo of ROC curves.
rotate.cloud Interactively rotate 3d plots.
run.cor.examp Show plots representing different correlations.
run.hist.demo Interactively change parameters for histograms.
SensSpec.demo Show relationship between Sensitivity, Specificity, Prevalence and PPV and NPV.
TkApprox Interactive linear interpolations of data.
tkBrush Brush points in a scatterplot matrix.
TkSpline Interactive spline interpolations of data.
tree.demo Interactively Recursive partition data (create trees).
vis.binom Plot various probability distributions and interactively change parameters.
vis.boxcox Interactively change lambda for Box Cox Transforms.
z.test Z-test similar to t.test for students who have not learned t tests yet.
Pvalue.norm.sim
Pvalue.binom.sim Simulate P-values to see how they are distributed.
run.Pvalue.norm.sim GUI for above.
run.Pvalue.binom.sim
HWidentify
HTKidentify Identify the point Hovered over with the mouse.
vis.test test a null hypothesis by comparing graphs.

Utility functions include:

bct Box-Cox Transforms.
char2seed set or create the random number seed using a character string
clipplot clip a plot to a rectangular region within the plot
col2grey convert colors to greyscale
cnvrt.coords Convert between the different coordinate systems
dynIdentify Scatterplot with point labels that can be dragged to a new position
TkIdentify Scatterplot with lables that can be dragged to new positions
gp.plot gp.splot send commands to gnuplot
hpd Highest Posterior Density intervals
my.symbols Create plots using user defined symbols.
panel.my.symbols Create lattice plots using user defined symbols.
plot2script Create a script file that recreates the current plot.
shadowtext plot text with contrasting shadow for better readability.
squishplot Set the margins so that a plot has a specific aspect ratio without large white space inside.
spread.labs Spread out coordinates so that labels do not overlap.
subplot create a plot inside of an existing plot.
tkexamp create plots that can have parameters adjusted interactively.
triplot Trilinear plot for 3 proportions.
txtStart/etxtStart/wdtxtStart Save commands and output to a text file (possibly for post processing with enscript).
zoomplot recreate the current plot with different x/y limits (zoom in out).

Author(s)

Greg Snow <538280@gmail.com>
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See Also

The tkrplot package

Examples

ci.examp()

clt.examp()
clt.examp(5)

plot.dice( expand.grid(1:6,1:6), layout=c(6,6) )

faces(rbind(1:3,5:3,3:5,5:7))

plot(1:10, 1:10)
my.symbols( 1:10, 1:10, ms.polygram, n=1:10, inches=0.3 )

x <- seq(1,100)
y <- rnorm(100)
plot(x,y, type='b', col='blue')
clipplot( lines(x,y, type='b', col='red'), ylim=c(par('usr')[3],0))

power.examp()
power.examp(n=25)
power.examp(alpha=0.1)

bct Box-Cox Transforms

Description

Computes the Box-Cox transform of the data for a given value of lambda. Includes the scaling
factor.

Usage

bct(y, lambda)

Arguments

y Vector of data to be transformed.

lambda Scalar exponent for transform (1 is linear, 0 is log).

Details

bct computes the Box-Cox family of transforms: y = (y^lambda - 1)/(lambda*gm^(lambda-1)),
where gm is the geometric mean of the y’s. returns log(y)*gm when lambda equals 0.
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Value

A vector of the same length as y with the corresponding transformed values.

Author(s)

Greg Snow <538280@gmail.com>

See Also

vis.boxcox, vis.boxcoxu, boxcox in package MASS, other implementations in various packages

Examples

y <- rlnorm(500, 3, 2)
par(mfrow=c(2,2))
qqnorm(y)
qqnorm(bct(y,1/2))
qqnorm(bct(y,0))
hist(bct(y,0))

cal Plot a month or year calendar

Description

Plot a calendar of the specified year or month. Monthly calendars can have additional information
(text/plots) added to the individual cells.

Usage

cal(month, year)

Arguments

month The month for the calendar, if ommitted will do a yearly calendar, can either be
a number from 1 to 12 or a character string that will be matched (using pmatch)
against month.name.

year The year for the calendar. If ommitted and month is an integer less than or equal
to 12 then month will be used as the year.
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Details

This function plots on the current (or default) graphics device a yearly or monthly calendar. It tries
to guess what you want, if both year and month are ommitted then it will plot the current month. If
month is an integer greater than 12 and no year is specified then that value will be used as the year
for a yearly calendar. The month can be either an integer from 1 to 12 or a character string that will
be matched against month.name using pmatch.

Each day of the monthly calendar is a plotting frame that can be added to using stardard low level
functions, the coordinates of the plotting region (the entire box) are from 0 to 1 in both dimensions.
The updateusr function can be used to change the coordinates. The return from the function (when
creating a monthly calendar) can be used to select the day.

Value

Nothing is returned when a whole year calendar is created. When the month calendar is created
a function is returned invisibly that if passed an integer corresponding to a day of the month will
set the graphics parameters so the corresponding day in the calendar becomes the current plotting
figure. See the examples below.

Author(s)

Greg Snow, <538280@gmail.com>

See Also

Sys.time, as.POSIXlt, par, updateusr

Examples

cal(2011)

cal('May')

setday <- cal(11, 2011)

setday(3)
text(0.5,0.5, 'Some\nCentered\nText')

setday(8)
text(1,1,'Top Right',adj=c(1,1))

setday(18)
text(0,0,'Bottom Left', adj=c(0,0) )

setday(21)
tmp.x <- runif(25)
tmp.y <- rnorm(25, tmp.x, .1)
mrgn.x <- 0.04*diff(range(tmp.x))
mrgn.y <- 0.04*diff(range(tmp.y))
updateusr( 0:1, 0:1, range(tmp.x)+c(-1,1)*mrgn.x, range(tmp.y)+c(-1,1)*mrgn.y)
points(tmp.x, tmp.y)
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setday(30)
tmp <- hist(rnorm(100), plot=FALSE)
updateusr( 0:1, 0:1, range(tmp$breaks), range(tmp$counts*1.1,0) )
lines(tmp)

char2seed Convert a character string into a random seed

Description

This function creates a seed for the random number generator from a character string. Character
strings can be based on student names so that every student has a different random sample, but the
teacher can generate the same datasets.

Usage

char2seed(x, set = TRUE, ...)

Arguments

x A character string

set Logical, should the seed be set or just returned

... Additional parameters passed on to set.seed

Details

Simulations or other situations call for the need to have repeatable random numbers, it is easier to
remember a word or string than a number, so this function converts words or character strings to an
integer and optionally sets the seed based on this.

Teachers can assign students to generate a random dataset using their name to seed the rng, this way
each student will have a different dataset, but the teacher can generate the same set of data to check
values.

Any characters other than letters (a-zA-Z) or digits (0-9) will be silently removed. This function is
not case sensitive, so "ABC" and "abc" will generate the same seed.

This is a many to one function, so it is possible to find different words that generate the same seed,
but this is unlikely by chance alone.

Value

This returns an integer (but mode numeric) to use as a seed for the RNG. If set is true then it is
returned invisibly.

Author(s)

Greg Snow <538280@gmail.com>
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See Also

set.seed

Examples

char2seed('Snow')
x <- rnorm(100)
rnorm(10)
tmp <- char2seed('Snow',set=FALSE)
set.seed(tmp)
y <- rnorm(100)

all.equal(x,y) # should be true

chisq.detail Print details of a chi-squared test

Description

Prints out the details of the computations involved in a chi-squared test on a table. Includes the
expected values and the chi-squared contribution of each cell.

Usage

chisq.detail(tab)

Arguments

tab Matrix or table to be analyzed

Details

This function prints out the input table along with the expected value for each cell under the null
hypothesis. It also prints out the chi-squared contribution of each cell in the same pattern as the
table. This shows the computations involved and one rule of thumb is to look for these values that
are greater than 4 as a post-hoc analysis.

Value

This function is used primarily for its side effect of printing the results, but does return invisibly a
list with the following components:

obs A matrix of the observed values, same as tab.

expected A matrix of the expected values under the null hypothesis.

chi.table A matrix of the chi-squared contributions of each cell.

chi2 The chi-squared test statistic.
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Author(s)

Greg Snow, <538280@gmail.com>

References

~put references to the literature/web site here ~ Moore, bps

See Also

chisq.test,loglin, xtabs, table, prop.table, CrossTable from the gmodels package.

Examples

chisq.detail(HairEyeColor[,,1])
chisq.detail(HairEyeColor[,,2])

ci.examp Plot examples of Confidence Intervals

Description

Generate reps samples from a normal distribution then compute and plot confidence intervals for
each sample along with information about the population to demonstrate confidence intervals. Op-
tionally change the confidence level using a Tk slider.

Usage

ci.examp(mean.sim = 100, sd = 10, n = 25, reps = 50, conf.level = 0.95,
method = "z", lower.conf = (1 - conf.level)/2,
upper.conf = 1 - (1 - conf.level)/2)

run.ci.examp(reps = 100, seed, method="z", n=25)

Arguments

mean.sim The mean of the population.

sd The standard deviation of the population.

n The sample size for each sample.

reps The number of samples/intervals to create.

conf.level The confidence level of the intervals.

method ’z’, ’t’, or ’both’, should the intervals be based on the normal, the t, or both
distributions.

lower.conf Quantile for lower confidence bound.

upper.conf Quantile for upper confidence bound.

seed The seed to use for the random number generation.
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Details

These functions demonstrate the concept of confidence intervals by taking multiple samples from
a known normal distribution and calculating a confidence interval for each sample and plotting the
interval relative to the true mean. Intervals that contain the true mean will be plotted in black and
those that do not include the true mean will be plotted in different colors.

The method argument determines the type of interval: ’z’ will use the normal distribution and
the known population standard deviation, ’t’ will use the t distribution and the sample standard
deviations, ’both’ will compute both for each sample for easy comparison (it is best to reduce reps
to about 25 when using ’both’).

The optional arguments lower.conf and upper.conf can be used to plot non-symmetric or 1 sided
confidence intervals.

The function run.ci.examp also creates a Tk slider that will allow you to interactively change the
confidence level and replot the intervals to show how the interval widths change with the confidence
level.

Value

These functions are run solely for the side effect of plotting the intervals, there is no meaningfull
return value.

Author(s)

Greg Snow <538280@gmail.com>

See Also

z.test, t.test

Examples

ci.examp()

if(interactive()) {
run.ci.examp()

}

# 1 sided confidence intervals
ci.examp(lower.conf=0, upper.conf=0.95)

# non-symmetric intervals
ci.examp(lower.conf=0.02, upper.conf=0.97)
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clipplot Clip plotting to a rectangular region

Description

Clip plotting to a rectangular region that is a subset of the plotting area

Usage

clipplot(fun, xlim = par("usr")[1:2], ylim = par("usr")[3:4])

Arguments

fun The function or expression to do the plotting.

xlim A vector of length 2 representing the x-limits to clip plotting to, defaults to the
entire width of the plotting region.

ylim A vector of length 2 representing the y-limits to clip the plot to, defaults to the
entire height of the plotting region.

Details

This function resets the active region for plotting to a rectangle within the plotting area and turns
on clipping so that any points, lines, etc. that are outside the rectange are not plotted.

A side effect of this function is a call to the box() command, it is called with a fully transparent
color so if your graphics device honors transparency then you will probably see no effect.

Value

Nothing meaningful is returned

Note

This function abuses some of the intent of what par(plt=...) is supposed to mean. In R2.7.0 and
beyond there is a new funcntion clip with the intended purpose of doing this in a more proper
manner (however as of my last test it is not working perfectly either, so clipplot will remain
undepricated for now).

It uses some hacks to make sure that the clipping region is set, but it does this by plotting some
tranparent boxes, therefore you should not use this on devices where tranparency is not supported
(or you may see extra boxes).

Author(s)

Greg Snow <538280@gmail.com>

See Also

par, lines, clip in R2.7.0 and later
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Examples

x <- seq(1,100)
y <- rnorm(100)
plot(x,y, type='b', col='blue')
clipplot( lines(x,y, type='b', col='red'), ylim=c(par('usr')[3],0))

attach(iris)

tmp <- c('red','green','blue')
names(tmp) <- levels(Species)
plot(Petal.Width,Petal.Length, col=tmp[Species])
for(s in levels(Species)){

clipplot( abline(
lm(Petal.Length~Petal.Width, data=iris, subset=Species==s),
col=tmp[s]),
xlim=range(Petal.Width[Species==s]))

}

detach(iris)

clt.examp Plot Examples of the Central Limit Theorem

Description

Takes samples of size n from 4 different distributions and plots histograms of the means along with
a normal curve with matching mean and standard deviation. Creating the plots for different values
of n demonstrates the Central Limit Theorem.

Usage

clt.examp(n = 1, reps = 10000, nclass = 16, norm.param=list(mean=0,sd=1),
gamma.param=list(shape=1, rate=1/3), unif.param=list(min=0,max=1),
beta.param=list(shape1=0.35, shape2=0.25))

Arguments

n size of the individual samples

reps number of samples to take from each distribution

nclass number of bars in the histograms

norm.param List with parameters passed to rnorm

gamma.param List with parameters passed to rgamma

unif.param List with parameters passed to runif

beta.param List with parameters passed to rbeta
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Details

The 4 distributions sampled from are a Normal with defaults mean 0 and standard deviation 1, a
gamma with defaults shape 1 (exponential) and lambda 1/3 (mean = 3), a uniform distribution from
0 to 1 (default), and a beta distribution with default alpha 0.35 and beta 0.25 (U shaped left skewed).

The norm.param, gamma.param, unif.param, and beta.param arguments can be used to change
the parameters of the generating distributions.

Running the function with n=1 will show the populations. Run the function again with n at higher
values to show that the sampling distribution of the uniform quickly becomes normal and the expo-
nential and beta distributions eventually become normal (but much slower than the uniform).

Value

This function is run for its side effect of creating plots. It returns NULL invisibly.

Author(s)

Greg Snow <538280@gmail.com>

See Also

rnorm, rexp, runif, rbeta

Examples

clt.examp()
clt.examp(5)
clt.examp(30)
clt.examp(50)

cnvrt.coords Convert between the 5 different coordinate sytems on a graphical de-
vice

Description

Takes a set of coordinates in any of the 5 coordinate systems (usr, plt, fig, dev, or tdev) and returns
the same points in all 5 coordinate systems.

Usage

cnvrt.coords(x, y = NULL, input = c("usr", "plt", "fig", "dev","tdev"))

Arguments

x Vector, Matrix, or list of x coordinates (or x and y coordinates), NA’s allowed.

y y coordinates (if x is a vector), NA’s allowed.

input Character scalar indicating the coordinate system of the input points.
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Details

Every plot has 5 coordinate systems:

usr (User): the coordinate system of the data, this is shown by the tick marks and axis labels.

plt (Plot): Plot area, coordinates range from 0 to 1 with 0 corresponding to the x and y axes and 1
corresponding to the top and right of the plot area. Margins of the plot correspond to plot coordinates
less than 0 or greater than 1.

fig (Figure): Figure area, coordinates range from 0 to 1 with 0 corresponding to the bottom and left
edges of the figure (including margins, label areas) and 1 corresponds to the top and right edges. fig
and dev coordinates will be identical if there is only 1 figure area on the device (layout, mfrow, or
mfcol has not been used).

dev (Device): Device area, coordinates range from 0 to 1 with 0 corresponding to the bottom and
left of the device region within the outer margins and 1 is the top and right of the region withing the
outer margins. If the outer margins are all set to 0 then tdev and dev should be identical.

tdev (Total Device): Total Device area, coordinates range from 0 to 1 with 0 corresponding to the
bottom and left edges of the device (piece of paper, window on screen) and 1 corresponds to the top
and right edges.

Value

A list with 5 components, each component is a list with vectors named x and y. The 5 sublists are:

usr The coordinates of the input points in usr (User) coordinates.

plt The coordinates of the input points in plt (Plot) coordinates.

fig The coordinates of the input points in fig (Figure) coordinates.

dev The coordinates of the input points in dev (Device) coordinates.

tdev The coordinates of the input points in tdev (Total Device) coordinates.

Note

You must provide both x and y, but one of them may be NA.

This function is now depricated with the new functions grconvertX and grconvertY in R version
2.7.0 and beyond. These new functions use the correct coordinate system names and have more
coordinate systems available, you should start using them instead.

Author(s)

Greg Snow <538280@gmail.com>

See Also

par specifically ’usr’,’plt’, and ’fig’. Also ’xpd’ for plotting outside of the plotting region and
’mfrow’ and ’mfcol’ for multi figure plotting. subplot, grconvertX and grconvertY in R2.7.0
and later
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Examples

old.par <- par(no.readonly=TRUE)

par(mfrow=c(2,2),xpd=NA)

# generate some sample data
tmp.x <- rnorm(25, 10, 2)
tmp.y <- rnorm(25, 50, 10)
tmp.z <- rnorm(25, 0, 1)

plot( tmp.x, tmp.y)

# draw a diagonal line across the plot area
tmp1 <- cnvrt.coords( c(0,1), c(0,1), input='plt' )
lines(tmp1$usr, col='blue')

# draw a diagonal line accross figure region
tmp2 <- cnvrt.coords( c(0,1), c(1,0), input='fig')
lines(tmp2$usr, col='red')

# save coordinate of point 1 and y value near top of plot for future plots
tmp.point1 <- cnvrt.coords(tmp.x[1], tmp.y[1])
tmp.range1 <- cnvrt.coords(NA, 0.98, input='plt')

# make a second plot and draw a line linking point 1 in each plot
plot(tmp.y, tmp.z)

tmp.point2 <- cnvrt.coords( tmp.point1$dev, input='dev' )
arrows( tmp.y[1], tmp.z[1], tmp.point2$usr$x, tmp.point2$usr$y,
col='green')

# draw another plot and add rectangle showing same range in 2 plots

plot(tmp.x, tmp.z)
tmp.range2 <- cnvrt.coords(NA, 0.02, input='plt')
tmp.range3 <- cnvrt.coords(NA, tmp.range1$dev$y, input='dev')
rect( 9, tmp.range2$usr$y, 11, tmp.range3$usr$y, border='yellow')

# put a label just to the right of the plot and
# near the top of the figure region.
text( cnvrt.coords(1.05, NA, input='plt')$usr$x,
cnvrt.coords(NA, 0.75, input='fig')$usr$y,
"Label", adj=0)

par(mfrow=c(1,1))

## create a subplot within another plot (see also subplot)

plot(1:10, 1:10)

tmp <- cnvrt.coords( c( 1, 4, 6, 9), c(6, 9, 1, 4) )
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par(plt = c(tmp$dev$x[1:2], tmp$dev$y[1:2]), new=TRUE)
hist(rnorm(100))

par(fig = c(tmp$dev$x[3:4], tmp$dev$y[3:4]), new=TRUE)
hist(rnorm(100))

par(old.par)

coin.faces Designs for coin faces for use with plot.rgl.coin

Description

This is a list of matricies where each matrix represents a design for drawing lines on the face of a
coin.

Usage

data(coin.faces)

Format

The format is: List of 4 $ qh: num [1:57, 1:2] 0.387 0.443 0.515 0.606 0.666 ... $ qt: num [1:62,
1:2] 0.862 0.873 0.875 0.857 0.797 ... $ H : num [1:28, 1:2] 0.503 0.506 0.548 0.548 0.500 ... $ T :
num [1:18, 1:2] 0.506 0.520 0.569 0.626 0.626 ...

Details

The current options are a capitol "H", a capitol "T", a design representing George Washingtons head
traced from the heads of a US quarter, and a design representing an eagle traced from the tails of a
US quarter.

The tracings here have pretty much exhausted my artistic ability, if you can do better, please do,
I will be happy to include it in future versions. It would also be nice to include some designs
representing faces of non-US coins, please submit your contributions (the design should fit within
a circle inscribed within the unit square).

Examples

## Not run:
plot.rgl.coin(heads=coin.faces$H, tails=coin.faces$T)

## End(Not run)
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col2grey Convert colors to grey/grayscale

Description

Convert colors to grey/grayscale so that you can see how your plot will look after photocopying or
printing to a non-color printer.

Usage

col2grey(cols)
col2gray(cols)

Arguments

cols Colors to convert.

Details

converts colors to greyscale using the formula grey=0.3*red + 0.59*green + 0.11*blue. This allows
you to see how your color plot will approximately look when printed on a non-color printer or
photocopied.

Value

A vector of colors (greys) corresponding to the input colors.

Author(s)

Greg Snow <538280@gmail.com>

See Also

grey, col2rgb, dichromat package

Examples

par(mfcol=c(2,2))
tmp <- 1:3
names(tmp) <- c('red','green','blue')

barplot( tmp, col=c('red','green','blue') )
barplot( tmp, col=col2gray( c('red','green','blue') ) )

barplot( tmp, col=c('red','#008100','#3636ff') )
barplot( tmp, col=col2grey( c('red','#008100','#3636ff') ) )
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cor.rect.plot Plot a visualization of the correlation using colored rectangles

Description

This function creates a scatterplot of the data, then adds colored rectangles between the points and
the mean of x and y to represent the idea of the correlation coefficient.

Usage

cor.rect.plot(x, y, corr = TRUE, xlab = deparse(substitute(x)),
ylab = deparse(substitute(y)), col = c("#ff000055", "#0000ff55"),
...)

Arguments

x The x value or any object that can be interpreted by xy.coords

y The y value

corr Should the standardized axes (right and top) show the values divided by the stan-
dard deviation (TRUE, which shows correlation ideas) or not (FALSE, shows
covariance idea)

xlab The label for the x axis

ylab The label for the y axis

col A vector of length 2 with the colors to use for the fill of the rectangles, the 1st
value will be used for "positive" rectangles and the 2nd value will be used for
the "negative" rectangles.

... Possible further arguments, currently ignored

Details

This will create a scatterplot of the data, draw refrence lines at the mean of x and the mean of y,
then draw rectangles from the mean point to the data points. The right and top axes will show the
centered (and possibly scaled if corr=TRUE) values.

The idea is that the correlation/covariance is based on summing the area of the "positive" rectangles
and subtracting the sum of the areas of the "negative" rectangles (then dividing by n-1). If the
positive and negative areas are about the same then the correlation/covariance is near 0, if there is
more area in the positive rectangles then the correlation/covariance will be positive.

Value

This function returns an invisible NULL, it is run for its side effects.

Author(s)

Greg Snow, <538280@gmail.com>
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See Also

cor

Examples

## low correlation
x <- rnorm(25)
y <- rnorm(25)
cor(x,y)
cor.rect.plot(x,y)

## Positive correlation
x <- rnorm(25)
y <- x + rnorm(25,3, .5)
cor(x,y)
cor.rect.plot(x,y)

## negative correlation
x <- rnorm(25)
y <- rnorm(25,10,1.5) - x
cor(x,y)
cor.rect.plot(x,y)

## zero correlation but a definite relationship
x <- -5:5
y <- x^2
cor(x,y)
cor.rect.plot(x,y)

dice Simulate rolling dice

Description

Simulate and optionally plot rolls of dice.

Usage

dice(rolls = 1, ndice = 2, sides = 6, plot.it = FALSE, load = rep(1, sides))
## S3 method for class 'dice'
plot(x, ...)

Arguments

rolls Scalar, the number of times to roll the dice.

ndice Scalar, the number of dice to roll each time.

sides Scalar, the number of sides per die.

plot.it Logical, Should the results be plotted.
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load Vector of length sides, how the dice should be loaded.

x Data frame, return value from dice.

... Additional arguments passed to lattice plotting function.

Details

Simulates the rolling of dice. By default it will roll 2 dice 1 time and the dice will be fair. Internally
the sample function is used and the load option is passed to sample. load is not required to sum to
1, but the elements will be divided by the sum of all the values.

Value

A data frame with rolls rows and ndice columns representing the results from rolling the dice.

If only 1 die is rolled, then the return value will be a vector.

If plot.it is TRUE, then the return value will be invisible.

Note

If the plot function is used or if plot.it is TRUE, then a plot will be created on the current graphics
device.

Author(s)

Greg Snow <538280@gmail.com>

See Also

sample

Examples

# 10 rolls of 4 fair dice
dice(10,4, plot.it=TRUE)

# or

plot(dice(10,4))

# or

tmp <- dice(10,4)
plot(tmp)

# a loaded die
table(tmp <- dice(100,1,plot.it=TRUE, load=6:1 ) )
colMeans(tmp)

# Efron's dice
ed <- list( rep( c(4,0), c(4,2) ),

rep(3,6), rep( c(6,2), c(2,4) ),
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rep( c(5,1), c(3,3) ) )

tmp <- dice( 10000, ndice=4 )
ed.out <- sapply(1:4, function(i) ed[[i]][ tmp[[i]] ] )

mean(ed.out[,1] > ed.out[,2])
mean(ed.out[,2] > ed.out[,3])
mean(ed.out[,3] > ed.out[,4])
mean(ed.out[,4] > ed.out[,1])

## redo De Mere's question

demere1 <- dice(10000,4)
demere2 <- dice(10000,24,sides=36)

mean(apply( demere1, 1, function(x) 6 %in% x ))

mean(apply( demere2, 1, function(x) 36 %in% x))

plot(demere1[1:10,])

## plot all possible combinations of 2 dice

plot.dice( expand.grid(1:6,1:6), layout=c(6,6) )

digits Return the digits that make up an integer

Description

Takes an integer or vector of integers and returns a vector, list, or matrix of the individual digits
(decimal) that make up that number.

Usage

digits(x, n = NULL, simplify = FALSE)

Arguments

x An integer or vector of integers (if not integer, the fractional part will be ignored)

n The number of digits to be returned, this can be used to place 0’s in front of
smaller numbers. If this is less than the number of digits then the last n digits
are returned.

simplify Should sapply simplify the list into a matrix
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Details

This function transforms an integer (or real ignoring the fractional part) into the decimal digits that
make of the decimal representation of the number using modular mathematics rather than converting
to character, splitting the string, and converting back to numeric.

Value

If x is of length 1 then a vector of the digits is returned.

If x is a vector and simplify is FALSE then a list of vectors is returned, one element for each element
of x.

If x is a vector and simplify is TRUE then a matrix with 1 column for each element of x.

Author(s)

Greg Snow <538280@gmail.com>

See Also

%%, %/%, strsplit

Examples

digits( 12345 )
digits( 567, n=5 )

x <- c(1, 23, 456, 7890)

digits(x)
digits(x, simplify=TRUE)

dots Create a quick dotchart (histogram)

Description

Create a quick dotchart of 1 or 2 datasets. These dotcharts are a poor man’s histogram, not the trellis
dotplot.

Usage

dots(x,...)
dots2(x, y, colx = "green", coly = "blue", lab1 =
deparse(substitute(x)), lab2 = deparse(substitute(y)),...)



24 dynIdentify

Arguments

x Vector, data to be plotted (should be rounded).
y Vector, second dataset to be plotted.
colx Color of points for x.
coly Color of points for y.
lab1 Label for x.
lab2 Label for y.
... Additional arguments passed to plotting functions.

Details

These functions create basic dotcharts that are quick "back of the envelope" approximations to
histograms. Mainly intended for demonstration.

Value

No meaninful value. These functions are run for the side effect of creating a plot.

Author(s)

Greg Snow <538280@gmail.com >

See Also

dotplot in the lattice package, hist

Examples

dots( round( rnorm(50, 10,3) ) )
dots2( round( rnorm(20, 10,3) ), round(rnorm(20,12,2)) )

dynIdentify Interacively place labels for points in a plot

Description

These functions create a scatterplot of your points and place labels for the points on them. You can
then use the mouse to click and drag the labels to new positions with a line stretching between the
point and label.

Usage

dynIdentify(x, y, labels = seq_along(x),
corners = cbind(c(-1, 0, 1, -1, 1, -1, 0, 1),
c(1, 1, 1, 0, 0, -1, -1, -1)), ...)

TkIdentify(x, y, labels=seq_along(x), hscale=1.75, vscale=1.75,
corners = cbind( c(-1,0,1,-1,1,-1,0,1), c(1,1,1,0,0,-1,-1,-1) ),...)
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Arguments

x x-values to plot

y y-values to plot

labels Labels for the points, defaults to a sequence of integers

corners 2 column matrix of locations where the line can attach to the label, see below

hscale, vscale Scaling passed to tkrplot

... Additional parameters passed to plot

Details

These functions create a scatterplot of the x and y points with the labels (from the argument above)
plotted on top. You can then use the mouse to click and drag the labels to new locations. The Tk
version shows the labels being dragged, dynIdentify does not show the labels being dragged, but
the label will jump to the new location as soon as you release the mouse button.

The corners argument is a 2 column matrix that gives the allowable points at which the line from
the point can attach to the label (so the line does not cover thelabel). The first column represents
the x-coordinates and the 2nd column the y-coordinates. A 1 represents the right/top of the label, A
-1 is the left/bottom and a 0 is the center. The default values allow attachments at the 4 corners and
the centers of the 4 sides of the rectangle bounding the label.

Value

A list of lists with the coordinates of the final positions of the labels and the line ends.

Note

The dynIdentify function only works on windows, TkIdentify should work on any platform with
tcltk.

Author(s)

Greg Snow, <538280@gmail.com>

See Also

identify

Examples

if(interactive()) {
tmp <- TkIdentify(state.x77[,'Frost'], state.x77[,'Murder'],
state.abb)

### now move the labels

### recreate the graph on the current device
plot( state.x77[,'Frost'], state.x77[,'Murder'],

xlab='Frost', ylab='Frost')
text( tmp$labels$x, tmp$labels$y, state.abb )
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segments( state.x77[,'Frost'], state.x77[,'Murder'],
tmp$lineends$x, tmp$lineends$y )

}

evap Data on soil evaporation.

Description

Data from 46 consecutive days on weather variables used to estimate amount of evaporation from
the soil.

Usage

data(evap)

Format

A data frame with 46 observations on the following 14 variables.

Obs Observation number

Month Month (6-June, 7-July)

day Day of the month

MaxST Maximum Soil Temperature

MinST Minimum Soil Temperature

AvST Average (integrated) Soil Temperature

MaxAT Maximum Air Temperature

MinAT Minimum Air Temperature

AvAT Average (integrated) Air Temperature

MaxH Maximum Relative Humidity

MinH Minimum Relative Humidity

AvH Average (integrated) Relative Humidity

Wind Total Wind

Evap Total evoporation from the soil

Details

The idea of the data is to predict the amount of evaporation given the other variables. Note that the
"average" values are scaled differently from the others, this is more an area under the curve measure
representing the total/average value.

This dataset was entered by hand from a low quality copy of the paper. If you find any typos, please
e-mail them to the package maintainer.
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Source

Freund, R.J. (1979) Multicollinearity etc., Some "New" Examples. Proceedings of the Statistical
Computing Section, *4*, 111-112.

Examples

data(evap)
pairs(evap[,-c(1,2,3)], panel=panel.smooth)
## maybe str(evap) ; plot(evap) ...

faces Chernoff Faces

Description

faces represent the rows of a data matrix by faces

Usage

faces(xy, which.row, fill = FALSE, nrow, ncol, scale = TRUE, byrow = FALSE, main, labels)

Arguments

xy xy data matrix, rows represent individuals and columns attributes

which.row defines a permutation of the rows of the input matrix

fill if(fill==TRUE), only the first nc attributes of the faces are transformed, nc is
the number of columns of xy

nrow number of columns of faces on graphics device

ncol number of rows of faces

scale if(scale==TRUE), attributes will be normalized

byrow if(byrow==TRUE), xy will be transposed

main title

labels character strings to use as names for the faces

Details

The features paramters of this implementation are: 1-height of face, 2-width of face, 3-shape of
face, 4-height of mouth, 5-width of mouth, 6-curve of smile, 7-height of eyes, 8-width of eyes,
9-height of hair, 10-width of hair, 11-styling of hair, 12-height of nose, 13-width of nose, 14-width
of ears, 15-height of ears. For details look at the literate program of faces

Value

a plot of faces is created on the graphics device, no numerical results
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Note

version 12/2003

Author(s)

H. P. Wolf

References

Chernoff, H. (1973): The use of faces to represent statistiscal assoziation, JASA, 68, pp 361–368.
The smooth curves are computed by an algorithm found in Ralston, A. and Rabinowitz, P. (1985):
A first course in numerical analysis, McGraw-Hill, pp 76ff. http://www.uni-bielefeld.de/
fakultaeten/wirtschaftswissenschaften : S/R - functions : faces

See Also

—

Examples

faces(rbind(1:3,5:3,3:5,5:7))

data(longley)
faces(longley[1:9,])

set.seed(17)
faces(matrix(sample(1:1000,128,),16,8),main="random faces")

if(interactive()){
tke1 <- rep( list(list('slider',from=0,to=1,init=0.5,resolution=0.1)), 15)
names(tke1) <- c('FaceHeight','FaceWidth','FaceShape','MouthHeight',
'MouthWidth','SmileCurve','EyesHeight','EyesWidth','HairHeight',
'HairWidth','HairStyle','NoseHeight','NoseWidth','EarWidth','EarHeight')
tkfun1 <- function(...){
tmpmat <- rbind(Min=0,Adjust=unlist(list(...)),Max=1)
faces(tmpmat, scale=FALSE)
}

tkexamp( tkfun1, list(tke1), plotloc='left', hscale=2, vscale=2 )
}

faces2 Chernoff Faces

Description

Plot Chernoff Faces of the dataset, rows represent subjects/observations, columns represent vari-
ables.

http://www.uni-bielefeld.de/fakultaeten/wirtschaftswissenschaften
http://www.uni-bielefeld.de/fakultaeten/wirtschaftswissenschaften
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Usage

faces2(mat, which = 1:ncol(mat), labels = rownames(mat),
nrows = ceiling(nrow(mat)/ncols), ncols = ceiling(sqrt(nrow(mat))),
byrow = TRUE, scale = c("columns", "all", "center", "none"),
fill = c(0.5, 0.5, 1, 0.5, 0.5, 0.3, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,

0.5, 0.5, 0.5, 0.5, 1, 0.5), ...)

Arguments

mat Matrix containing the data to plot.

which Which columns correspond to which features (see details).

labels Labels for the individual faces

nrows Number of rows in the graphical layout

ncols Number of columns in the graphical layout

byrow Logical, should the faces be drawn rowwise or columnwise.

scale Character, how should the data be scaled.

fill What value to use for features not assocaiated with a column of data.

... Additional arguments passed on to plotting functions.

Details

The features are: 1 Width of center 2 Top vs. Bottom width (height of split) 3 Height of Face 4
Width of top half of face 5 Width of bottom half of face 6 Length of Nose 7 Height of Mouth 8
Curvature of Mouth (abs < 9) 9 Width of Mouth 10 Height of Eyes 11 Distance between Eyes (.5-
.9) 12 Angle of Eyes/Eyebrows 13 Circle/Ellipse of Eyes 14 Size of Eyes 15 Position Left/Right of
Eyeballs/Eyebrows 16 Height of Eyebrows 17 Angle of Eyebrows 18 Width of Eyebrows

The face plotting routine needs the data values to be between 0 and 1 (inclusive). The scale option
controls how scaling will be done on mat: "columns" scales each column to range from 0 to 1, "all"
scales the entire dataset to vary from 0 to 1, "center" scales each column so that the mean of the
column becomes 0.5 and all other values are between 0 and 1, and "none" does no scaling assuming
that the data has already been scaled.

Value

This function is run for its side effect of plotting and does not return anything.

Note

If you choose to not scale the data and any data values are outside of the 0 to 1 range, then strange
things may happen.

This function is based on code found on the internet, the good things come from there, any problems
are likely due to my (Greg’s) tweaking.

Author(s)

Original code by ; current implementation by Greg Snow <538280@gmail.com>
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References

Chernoff, H. (1973): The use of faces to represent statistiscal assoziation, JASA, 68, pp 361–368.

See Also

faces

Examples

faces2(matrix( runif(18*10), nrow=10), main='Random Faces')

if(interactive()){
tke2 <- rep( list(list('slider',from=0,to=1,init=0.5,resolution=0.1)), 18)
names(tke2) <- c('CenterWidth','TopBottomWidth','FaceHeight','TopWidth',
'BottomWidth','NoseLength','MouthHeight','MouthCurve','MouthWidth',
'EyesHeight','EyesBetween','EyeAngle','EyeShape','EyeSize','EyeballPos',
'EyebrowHeight','EyebrowAngle','EyebrowWidth')
tkfun2 <- function(...){
tmpmat <- rbind(Min=0,Adjust=unlist(list(...)),Max=1)
faces2(tmpmat, scale='none')
}

tkexamp( tkfun2, list(tke2), plotloc='left', hscale=2, vscale=2 )
}

fagan.plot Create a Fagan plot to demonstrate Bayes Theorem and screening tests

Description

These functions create a plot showing the relationship between the prior probability, the LR (com-
bination of sensitivity and specificity), and the posterior probability.

Usage

fagan.plot(probs.pre.test, LR, test.result="+")
plotFagan(hscale=1.5, vscale=1.5, wait=FALSE)
plotFagan2(hscale=1.5, vscale=1.5, wait=FALSE)
plotFagan.old()
plotFagan2.old()

Arguments

probs.pre.test The prior probability

LR the likelihood ratio (sensitivity/(1-specificity))

test.result either ’+’ or ’-’ indicating whether you want the probability of the event or of
not seeing the event
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hscale Horizontal scale, passed to tkrplot

vscale Vertical scale, passed to tkrplot

wait Should the R session wait for the window to close

Details

When Bayes theorem is expressed in terms of log-odds it turns out that the posterior log-odds are
a linear function of the prior log-odds and the log likelihood ratio. These functions plot an axis on
the left with the prior log-odds, an axis in the middle representing the log likelihood ratio and an
axis on the right representing the posterior log-odds. A line is then drawn from the prior probability
on the left through the LR in the center and extended to the posterior probability on the right.
The fagan.plot creates the plot based on input to the function. The plotFagan and plotFagan2
functions set up Tk windows with sliders representing the possible inputs and show how the plot
and the posterior probability changes when you adjust the inputs. The plotFagan function creates
sliders for the prior probability and the LR, while the plotFagan2 function replaces the LR slider
with 2 sliders for the sensitivity and specificity.

More detail on the plots and the math behind them can be found at the websites below.

Value

The old functions are run for their side effects and do not return a meaningful value. If wait is
FALSE then NULL is returned, if wait is TRUE, then a list with the current values is returned.

Author(s)

Guazzetti Stefano and Greg Snow <538280@gmail.com>

References

Fagan TJ. Nomogram for Bayes theorem. N Engl J Med 1975;293(5):257-61. https://ebm.bmj.
com/content/6/6/164.full

See Also

slider

Examples

fagan.plot(0.8, 2)

fagan.plot(0.8, 0.95/(1-0.90) )

if(interactive()) {
plotFagan()

plotFagan2()
}

https://ebm.bmj.com/content/6/6/164.full
https://ebm.bmj.com/content/6/6/164.full
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gp.open Alpha version functions to send plotting commands to GnuPlot

Description

These functions allow you to open a connection to a gnuplot process, send data and possibly other
information to gnuplot for it to plot, then close gnuplot and clean up temporary files and variables.
These functions are alpha level at best, use at your own risk.

Usage

gp.open(where='c:/progra~1/GnuPlot/bin/pgnuplot.exe')
gp.close(pipe=gpenv$gp)
gp.send(cmd='replot',pipe=gpenv$gp)
gp.plot(x,y,type='p',add=FALSE, title=deparse(substitute(y)),pipe=gpenv$gp)
gp.splot(x,y,z, add=FALSE, title=deparse(substitute(z)), pipe=gpenv$gp,
datafile=tempfile())

Arguments

where Path to GnuPlot Executable

pipe The pipe object connected to GnuPlot (returned from gp.open), warning: chang-
ing this from the default will probably break things

cmd Text string, the command to be sent verbatim to the GnuPlot process

x The x coordinates to plot

y the y coordinates to plot

z the z coordinates to splot

type Either ’p’ or ’l’ for plotting points or lines

add Logical, should the data be added to the existing plot or start a new plot

title The title or legend entry

datafile The file to store the data in for transfer to gnuplot

Details

These functions provide a basic interface to the GnuPlot program (you must have GnuPlot installed
(separate install)), gp.open runs GnuPlot and establishes a pipe connection, gp.close sends a
quite command to gnuplot and cleans up temporary variables and files, gp.send sends a command
to the GnuPlot process verbatim, and gp.plot sends data and commands to the process to create a
standard scatterplot or line plot.

Value

gp.open returns and invisible copy of the pipe connection object (to pass to other functions, but
don’t do this because it doesn’t work right yet).

The other 3 functions don’t return anything meaningful. All functions are run for their side effects.
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Note

These functions create some temporary files and 2 temporary global variables (.gp and .gp.tempfiles),
running gp.close will clean these up (so use it).

These functions are still alpha level.

Author(s)

Greg Snow <538280@gmail.com>

References

http://www.gnuplot.info/

See Also

plot

Examples

## Not run:

x <- 1:10
y <- 3-2*x+x*x+rnorm(10)

gp.open()
gp.plot(x,y)
gp.send('replot 3-2*x+x**2')

tmp <- expand.grid(x=1:10, y=1:10)
tmp <- transform(tmp, z=(x-5)*(y-3))
gp.splot(tmp$x, tmp$y, tmp$z)

gp.close()

## End(Not run)

hpd Compute Highest Posterior Density Intervals

Description

Compute the Highest Posterior Density Interval (HPD) from an inverse density function (hpd) or a
vector of realizations of the distribution (emp.hpd).

Usage

hpd(posterior.icdf, conf=0.95, tol=0.00000001,...)

emp.hpd(x, conf=0.95, lower, upper)

http://www.gnuplot.info/
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Arguments

posterior.icdf Function, the inverse cdf of the posterior distribution (usually a function whose
name starts with ’q’).

x A vector of realizations from the posterior distribution.

conf Scalar, the credible level desired.

tol Scalar, the tolerance for optimize.

... Additional arguments to posterior.icdf.

lower Optional lower bound on support of x.

upper Optional upper bound on support of x.

Details

These functions compute the highest posterior density intervals (sometimes called minimum length
confidence intervals) for a Bayesian posterior distribution. The hpd function is used when you have
a function representing the inverse cdf (the common case with conjugate families). The emp.hpd
function is used when you have realizations of the posterior (when you have results from an MCMC
run).

Value

A vector of length 2 with the lower and upper limits of the interval.

Note

These functions assume that the posterior distribution is unimodal, they compute only 1 interval,
not the set of intervals that are appropriate for multimodal distributions.

Author(s)

Greg Snow <538280@gmail.com>

See Also

hdr in the hdrcde package.

Examples

hpd(qbeta, shape1=50, shape2=250)

tmp <- rbeta(10000, 50, 250)
emp.hpd(tmp)
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HWidentify Show label for point being Hovered over.

Description

These functions create a scatterplot then you Hover the mouse pointer over a point in the plot and it
will show an id label for that point.

Usage

HWidentify(x, y, label = seq_along(x), lab.col="darkgreen",
pt.col="red", adj=c(0,0), clean=TRUE, xlab = deparse(substitute(x)),
ylab = deparse(substitute(y)), ...)
HTKidentify(x, y, label = seq_along(x), lab.col="darkgreen",
pt.col="red", adj=c(0,0), xlab = deparse(substitute(x)),
ylab = deparse(substitute(y)), ...)

Arguments

x x-coordinates to plot

y y-coordinates to plot

label Labels to show for each point

lab.col The color to plot the labels

pt.col The color of the highlighting point

adj The adjustment of the labels relative to the cursor point. The default places the
label so that its bottom left corner is at the curser, values below 0 or greater than
1 will move the label to not touch the cursor.

clean Logical value, should any labels on the plot be removed at the end of the plotting.

xlab Label for x-axis

ylab Label for y-axis

... additional arguments passed through to plot

Details

This is an alternative to the identify function. The label only shows up for the point currently
closest to the mouse pointer. When the mouse pointer moves closer to a different point, the label
changes to the one for the new point. The currently labeled point is also highlighted. HWidentify
only works on windows, HTKidentify requires the tkrplot package.

Value

These functions are run for their side effects, nothing meaningful is returned.

Author(s)

Greg Snow, <538280@gmail.com>
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See Also

identify

Examples

if( interactive() ){
tmpx <- runif(25)
tmpy <- rnorm(25)
HTKidentify(tmpx,tmpy, LETTERS[1:25], pch=letters)

}

lattice.demo Interactively explore the conditioned panels in lattice plots.

Description

Plot 1 panel from an xyplot, and optionally a 3d graph highligting the shown points, then allow you
to interactively set the conditioning set of data to see the effects and help you better understand how
xyplot works.

Usage

lattice.demo(x, y, z, show3d = TRUE)

Arguments

x The x variable to plot (numeric).

y The y variable to plot (numeric).

z The variable to condition on (numeric).

show3d Logical, should a 3D cloud be shown as well.

Details

This function is intended to for demonstration purposes to help understand what is happening in an
xyplot (lattice). When you run the demo it will create a single panel from a conditioned xyplot
and optionally a 3D cloud with the points included in the panel highlighted. The function then
opens a tcl/tk dialog box that allows you to choose which points are included in the panel (based
on the conditioning variable). You can choose the center and width of the shingle displayed and the
graph will update to show the new selection.

The intent for this function is for a teacher to show a class how lattice graphics take slices of a 3d
plot and show each slice seperately. Students could then work through some examples on their own
to better understand what functions like xyplot are doing automatically.

Value

No meaningful return value, this function is run for the side effects.
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Author(s)

Greg Snow <538280@gmail.com>

See Also

xyplot in lattice package

Examples

if(interactive()){
require(stats)
lattice.demo(quakes$long, quakes$lat, quakes$depth)
}

ldsgrowth Growth of The Church of Jesus Christ of Latter-day Saints.

Description

Data on the Growth of The Church of Jesus Christ of Latter-day Saints (commonly known as the
Mormon church (https://www.churchofjesuschrist.org/comeuntochrist)).

Usage

data(ldsgrowth)

Format

A data frame with 179 observations on the following 6 variables.

Year Year from 1830 to 2008

Members Total number of Members

Wards Number of Wards and Branches (individual congregations)

Stakes Number of Stakes (a group of wards/branches)

Missions Number of Missions

Missionaries Number of Missionaries called

Details

The data comes from the church records and are as of December 31st of each year.

The church was officially organized on 6 April 1830 (hence the starting year of 1830).

The Missionaries column represents the number of missionaries called each year. Missionaries
generally serve for about 2 years.

https://www.churchofjesuschrist.org/comeuntochrist
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Source

Deseret News 2010 Church News Almanac

Examples

data(ldsgrowth)
with(ldsgrowth, plot(Year, log(Members)))

loess.demo Demonstrate the internals of loess curve fits

Description

Creates a scatterplot with a loess fit, then interactively shows the window and case weights used to
create the curve at the selected value of x.

Usage

loess.demo(x, y, span = 2/3, degree = 1, nearest = FALSE,
xlim = numeric(0), ylim = numeric(0), verbose = FALSE)

Arguments

x The x coordinates to be plotted.

y The y coordinates to be plotted.

span The relative width of the window, passed on to loess.

degree Degree of polynomial to use (0, 1, or 2), passed on to loess.

nearest Logical, should predictions be made at the point where you clicked (FALSE), or
at the nearest x value of the data to where you clicked (TRUE).

xlim Limits of the Horizonal axis.

ylim Limits of the Vertical axis.

verbose If true then print the x coordinate being predicted.

Details

This function demonstrates the underlying calculations of loess curves.

Given x and y vectors it will create a scatterplot and add 2 loess fit lines (one using straight loess
smooth with linear interpolation and one that does a spline interpolation of the loess fit).

The function then waits for the user to click on the plot. The function then shows the window of
points (centered at the x value clicked on) used in the weighting for predicting that point and shows
a circle around each point in the window where the area of the circle is proportional to the weight
of that point in the linear fit. The function also shows the linear (or quadratic) fit used to predict at
the selected point.
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The basic steps of the loess algorithm (as demonstrated by the function) is that to predict the y-value
for a given x-value the computer:

1. Find all the points within a window around the x-value (the width of the window is based on the
parameter span). 2. Weight the points in the window with points nearest the x-value having the
highest weight. 3. Fit a weighted linear (quadratic) line to the points in the window. 4. Use the
y-value of the fitted line (curve) at the x-value to give loess prediction at that x-value.

Clicking on another point in the graph will replot with the new situation.

Right click and select ’stop’ to end the demonstration.

Value

This function does not return anything, it is run purely for its side effects.

Author(s)

Greg Snow <538280@gmail.com>

See Also

loess, locator

Examples

if(interactive()){
data(ethanol, package='lattice')
attach(ethanol)
loess.demo(E, NOx)
# now click a few places, right click to end
loess.demo(E, NOx, span=1.5)
loess.demo(E, NOx, span=0.25)
loess.demo(E, NOx, degree=0)
loess.demo(E, NOx, degree=2)
detach()
}

mle.demo Demonstrate the basic concept of Maximum Likelihood Estimation

Description

This function graphically shows log likelihoods for a set of data and the normal distribution and
allows you to interactively change the parameter estimates to see the effect on the log likelihood.

Usage

mle.demo(x = rnorm(10, 10, 2), start.mean = mean(x) - start.sd,
start.sd = 1.2 * sqrt(var(x)))
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Arguments

x A vector of data (presumably from a normal distribution).

start.mean The initial value for estimating the mean.

start.sd The initial value for estimating the standard deviation.

Details

The function creates a plot with 3 panels: the top panel shows a normal curve based on the cur-
rent values of the mean and standard deviation along with a vertical line for each point in x (the
product of the heights of these lines is the likelihood, the sum of the logs of their heights is the log
likelihood).

The lower 2 plots show the profiles of the mean and standard deviation. The y-axis is the likelihoods
of the parameters tried so far, and the x-axes are the mean and standard deviation tried. The point
corresponding to the current parameter estimates will be solid red.

A Tk slider box is also created that allows you to change the current estimates of the mean and stan-
dard deviation to show the effect on the log likelihood and find the maximum likelihood estimate.

Value

This function is run for its side effects and returns NULL.

Author(s)

Greg Snow <538280@gmail.com>

See Also

fitdistr in package MASS, mle in package stats4, slider

Examples

if(interactive()){
mle.demo()

m <- runif(1, 50,100)
s <- runif(1, 1, 10)
x <- rnorm(15, m, s)

mm <- mean(x)
ss <- sqrt(var(x))
ss2 <- sqrt(var(x)*11/12)
mle.demo(x)
# now find the mle from the graph and compare it to mm, ss, ss2, m, and s
}
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ms.polygram Symbol functions/data to be passed as symb argument to my.symbols

Description

These functions/data matricies are examples of what can be passed as the symb argument in the
my.symbols function. They are provided both to be used for some common symbols and as exam-
ples of what can be passed as the symb argument.

Usage

ms.polygram(n, r=1, adj=pi/2, ...)
ms.polygon(n, r=1, adj=pi/2, ...)
ms.filled.polygon(n, r=1, adj=pi/2, fg=par('fg'), bg=par('fg'), ... )
ms.male
ms.female
ms.arrows(angle, r=1, adj=0.5, length=0.1, ...)
ms.sunflowers(n,r=0.3,adj=pi/2, ...)
ms.image(img, transpose=TRUE, ...)
ms.face(features, ...)

Arguments

n The number of sides for polygons and polygrams, the number of petals(lines)
for sunflowers.

r The radius of the enclosing circle for polygons and polygrams (1 means that
it will pretty much fill the bounding square). For sunflowers this is the radius
(relative to the inches square) of the inner circle. For arrows this controls the
length of the arrow, a value of 2 means the length of the arrow will be the same
as inches (but it may then stick out of the box if adj != 1).

adj For polygons, polygrams, and sunflowers this is the angle in radians that the first
corner/point will be. The default puts a corner/point straight up, this can be used
to rotate the symbols. For arrows, this determines the positioning of the arrow,
a value of 0 means the arrow will start at the x,y point and point away from it,
0.5 means the arrow will be centered at x,y and 1 means that the arrow will end
(point at) x,y.

fg, bg Colors for the filled polygons. fg is the color of the line around the polygon and
bg is the fill color, see polygon.

angle The angle in radians that the arrow will point.

length The length of the arrow head (see arrows).

img A 3 dimensional array representing an image such as produced by the png or
EBImage packages.

transpose Should the image be tranposed, use TRUE for images imported using package
png and FALSE for images imported using EBImage.
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features A list of data representing the features of the faces, each element represents 1
face and the values need to be scaled between 0 and 1, see faces for details on
which elements match which features.

... additional parameters that will be passed to plotting functions or be ignored.

Details

These functions/matricies can be passed as the symb argument to the my.symbols function. The
represent examples that can be used to create your own symbols or may be used directly.

Value

These functions either return a 2 column matrix of points to be passed to lines or NULL.

Author(s)

Greg Snow <538280@gmail.com>

See Also

my.symbols, polygon, arrows, lines, faces, also see rasterImage for an alternative to ms.image

Examples

plot(1:10,1:10)
my.symbols(1:10,1:10, ms.polygram, n=1:10, r=seq(0.5,1,length.out=10),
inches=0.3)

my.symbols(1:10,1:10, ms.polygon, n=1:10, add=FALSE, inches=0.3)

my.symbols(1:5, 5:1, ms.filled.polygon, add=FALSE, n=3:7, fg='green',
bg=c('red','blue','yellow','black','white'), inches=0.3 )

my.symbols( 1:10, 1:10, ms.female, inches=0.3, add=FALSE)
my.symbols( 1:10, 10:1, ms.male, inches=0.3, add=TRUE)

plot(1:10, 1:10)
my.symbols(1:10, 1:10, ms.arrows, angle=runif(10)*2*pi, inches=0.5,
adj=seq(0,1,length.out=10), symb.plots=TRUE)

my.symbols(1:10, 1:10, ms.sunflowers, n=1:10, inches=0.3, add=FALSE)

if( require(png) ) {
img <- readPNG(system.file("img", "Rlogo.png", package="png"))

my.symbols( runif(10), runif(10), ms.image, MoreArgs=list(img=img),
inches=0.5, symb.plots=TRUE, add=FALSE)

}

tmp.mtcars <- scale(mtcars, center=sapply(mtcars,min),
scale=sapply(mtcars,function(x) diff(range(x))) )

tmp2.mtcars <- lapply( seq_len(nrow(tmp.mtcars)), function(i) tmp.mtcars[i,] )
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my.symbols(mtcars$wt, mtcars$mpg, ms.face, inches=0.3, features=tmp2.mtcars,
add=FALSE)

my.symbols Draw Symbols (User Defined) on a Plot

Description

This function draws symbols on a plot. It is similar to the builtin symbols function with the differ-
ence that it plots symbols defined by the user rather than a prespecified set of symbols.

Usage

my.symbols(x, y=NULL, symb, inches=1, xsize, ysize,
add=TRUE,
vadj=0.5, hadj=0.5,
symb.plots=FALSE,
xlab=deparse(substitute(x)),
ylab=deparse(substitute(y)), main=NULL,
xlim=NULL, ylim=NULL, linesfun=lines,
..., MoreArgs)

Arguments

x, y The x and y coordinates for the position of the symbols to be plotted. These can
be specified in any way which is accepted by xy.coords.

symb Either a matrix, list, or function defining the symbol to be plotted. If it is a
matrix or list it needs to be formatted that it can be passed directly to the lines
function. It then defines the shape of the symbol on on a range/domain of -1 to
1. If this is a function it can either return a matrix or list as above (points on the
range/domain of -1 to 1), or it can do the plotting itself.

inches The size of the square containing the symbol in inches (note: unlike symbols
this cannot be FALSE). This is ignored if xsize or ysize is specified.

xsize The width of the bounding box(s) of the symbols in the same units as the x
variable. Computed from ysize or inches if not specified. Can be a single
value or a vector.

ysize The height of the bounding box(s) of the symbols in the same units as the y
variable. Computed from xsize or inches if not specified. Can be a single
value or a vector.

add if ’add’ is ’TRUE’ then the symbols are added to the existing plot, otherwise a
new plot is created.

vadj, hadj Numbers between 0 and 1 indicating how ’x’ and ’y’ specify the location of the
symbol. The defaults center the symbol at x,y; 0 means put the bottom/left at
x,y; and 1 means put the top/right of the symbol at x,y.
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symb.plots If symb is a function that does its own plotting, set this to TRUE, otherwise it
should be FALSE.

xlab, ylab, main, xlim, ylim
If ’add’ is ’FALSE’ these are passed to the plot function when setting up the
plot.

linesfun The function to draw the lines if the function does not do its own drawing. The
default is lines but could be replaced with polygon to draw filled polygons

... Additional arguments will be replicated to the same length as x then passed to
symb (if symb is a function) and/or the lines function (one value per symbol
drawn).

MoreArgs A list with any additional arguments to be passed to the symb function (as is,
without being replicated/split).

Details

The symb argument can be a 2 column matrix or a list with components ’x’ and ’y’ that defines
points on the interval [-1,1] that will be connected with lines to draw the symbol. If you want a
closed polygon then be sure to replicate the 1st point as the last point.

If any point contains an NA then the line will not be drawn to or from that point. This can be used
to create a symbol with disjoint parts that should not be connected.

If symb is a function then it should include a ’...’ argument along with any arguments to define
the symbol. Any unmatched arguments that end up in the ’...’ argument will be replicated to the
same length as ’x’ (using the rep function) then the values will be passed one at a time to the
symb function. If MoreArgs is specified, the elements of it will also be passed to symb without
modification. The symb function can either return a matrix or list with the points that will then be
passed to the lines function (see above). Or the function can call the plotting functions itself (set
symb.plots to TRUE). High level plotting can be done (plot, hist, and other functions), or low
level plotting functions (lines, points, etc) can be used; in this case they should add things to a
plot with ’x’ and ’y’ limits of -1 to 1.

The size of the symbols can be specified by using inches in which case the symbol will be set
inside of squares whose sizes are inches size based on the plotting device. The size can also be
set using xsize and/or ysize which use the same units as the x and/or y variables. If only one is
specified then the box will be square. If both are specified and they do not match the aspect ratio of
the plot then the bounding box will not be square and the symbol will be distorted.

Value

This function is run for its side effect of plotting, it returns an invisible NULL.

Note

Since the ’...’ argument is passed to both lines and symb, the symb function should have a ’...’
argument so that it will ignore any additional arguments.

Arguments such as ’type’ can be passed through the ’...’ argument if you want the symbol made of
something other than lines.

Plotting coordinates and sizes are based on the size of the device at the time the function is called.
If you resize the device after plotting, all bets are off.
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Currently missing values in x or y are not handled well. It is best if remove all missing values first.

Author(s)

Greg Snow <538280@gmail.com>

See Also

symbols, subplot, mapply, ms.polygram, lines

Examples

# symb is matrix

my.symbols( 1:10, runif(10), ms.male, add=FALSE, xlab='x',
ylab='y', inches=0.3, col=c('blue','green'), xlim=c(0,11), ylim=c(-0.1,1.1))

my.symbols( (1:10)+0.5, runif(10), ms.female, add=TRUE, inches=0.3,
col=c('red','green') )

# symb is function returning matrix

plot(1:10, 1:10)
my.symbols( 1:10, 1:10, ms.polygram, n=1:10, inches=0.3 )

# symb is plotting function
# create a variation on monthplot

fit <- lm( log(co2) ~ time(co2) )
fit.r <- resid(fit)

x <- 1:12
y <- tapply(fit.r, cycle(co2), mean)

tmp.r <- split( fit.r, cycle(co2) )
tmp.r <- lapply( tmp.r, function(x) x-mean(x) )

yl <- do.call('range',tmp.r)

tmpfun <- function(w,data,ylim,...){
tmp <- data[[w]]
plot(seq(along=tmp),tmp, type='l', xlab='',ylab='',

axes=FALSE, ylim=ylim)
lines(par('usr')[1:2], c(0,0), col='grey')

}

my.symbols(x,y, symb=tmpfun, inches=0.4, add=FALSE, symb.plots=TRUE,
xlab='Month',ylab='Adjusted CO2', xlim=c(0.5,12.5),
ylim=c(-0.012,0.012),
w=1:12, MoreArgs=list(data=tmp.r,ylim=yl) )

# using xsize and ysize
plot( 1:10, (1:10)*100, type='n', xlab='', ylab='' )
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my.symbols( 5, 500, ms.polygon, n=250, inches=1.5 )
my.symbols( 5, 500, ms.polygon, n=250, xsize=2, col='blue' )
my.symbols( 5, 500, ms.polygon, n=250, ysize=200, col='green' )
my.symbols( 5, 500, ms.polygon, n=250, xsize=2, ysize=200, col='red' )
abline( v=c(4,6), col='grey' )
abline( h=c(400, 600), col='grey' )

# hand crafted hexagonal grid

x1 <- seq(0, by=2*sqrt(3), length.out=10)
y1 <- seq(0, by=3, length.out=10)

mypoints <- expand.grid(x=x1, y=y1)
mypoints[,1] <- mypoints[,1] + rep( c(0,sqrt(3)), each=10, length.out=100 )

plot(mypoints, asp=1, xlim=c(-2,35))
my.symbols(mypoints, symb=ms.filled.polygon, n=6,

inches=par('pin')[1]/(diff(par('usr')[1:2]))*4,
bg=paste('gray',1:100,sep=''), fg='green' )

outliers Outliers data

Description

This dataset is approximately bell shaped, but with some outliers. It is meant to be used for demon-
stration purposes. If students are tempted to throw out all outliers, then have them work with this
data (or use a scaled/centered/shuffled version as errors in a regression problem) and see how many
throw away 3/4 of the data before rethinking their strategy.

Usage

data(outliers)

Format

The format is: num [1:100] -1.548 0.172 -0.638 0.233 -0.228 ...

Details

This is simulated data meant to demonstrate "outliers".

Source

Simulated, see the examples section.
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Examples

data(outliers)
qqnorm(outliers)
qqline(outliers)
hist(outliers)

o.chuck <- function(x) { # function to throw away outliers
qq <- quantile(x, c(1,3)/4, names=FALSE)
r <- diff(qq) * 1.5
tst <- x < qq[1] - r | x > qq[2] + r
if(any(tst)) {
cat('Removing ', paste(x[tst], collapse=', '), '\n')
x <- x[!tst]
out <- Recall(x)
} else {
out <- x
}
out

}

x <- o.chuck( outliers )
length(x)

if(require(MASS)) {
char2seed('robust')
x <- 1:100
y <- 3 + 2*x + sample(scale(outliers))*10

plot(x,y)
fit <- lm(y~x)
abline(fit, col='red')

fit.r <- rlm(y~x)
abline(fit.r, col='blue', lty='dashed')

rbind(coef(fit), coef(fit.r))
length(o.chuck(resid(fit)))

}

### The data was generated using code similar to:

char2seed('outlier')

outliers <- rnorm(25)

dir <- 1

while( length(outliers) < 100 ){
qq <- quantile(c(outliers, dir*Inf), c(1,3)/4)
outliers <- c(outliers,
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qq[ 1.5 + dir/2 ] + dir*1.55*diff(qq) + dir*abs(rnorm(1)) )
dir <- -dir

}

pairs2 Create part of a scatterplot matrix

Description

This function is similar to the pairs function, but instead of doing all pairwise plots, it takes 2
matricies or data frames and does all combinations of the first on the x-axis with the 2nd on the
y-axis. Used with pairs and subsets can spread a scatterplot matrix accross several pages.

Usage

pairs2(x, y, xlabels, ylabels, panel = points, ..., row1attop = TRUE, gap = 1)

Arguments

x Matrix or data frame of variables to be used as the x-axes.

y Matrix or data frame of variables to be used as the y-axes.

xlabels Labels for x variables (defaults to colnames of x).

ylabels Labels for y variables (defaults to colnames of y).

panel Function to do the plotting (see pairs).

... additional arguments passed to graphics functions

row1attop Logical, should the 1st row be the top.

gap Distance between plots.

Details

This functios is similar to the pairs function, but by giving it 2 sets of data it only does the combi-
nations between them. Think of it as giving the upper right or lower left set of plots from pairs. If
a regular scatterplot matrix is too small on the page/device then use pairs on subsets of the data to
get the diagonal blocks of a scatterplot matrix and this function to get the off diagonal blocks.

Value

This function is run for the side effect of the plot. It does not return anything useful.

Note

Large amounts of the code for this function were blatently borrowed/stolen from the pairs function,
the credit for the useful parts should go to the original authors, blame for any problems should go
to me. This function is also released under GPL since much of it comes from GPL code.
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Author(s)

Greg Snow, <538280@gmail.com>

See Also

pairs, splom in the lattice package

Examples

pairs2(iris[,1:2], iris[,3:4], col=c('red','green','blue')[iris$Species])

# compare the following plot:
pairs(state.x77, panel=panel.smooth)

# to the following 4 plots

pairs(state.x77[,1:4], panel=panel.smooth)
pairs(state.x77[,5:8], panel=panel.smooth)
pairs2( state.x77[,1:4], state.x77[,5:8], panel=panel.smooth)
pairs2( state.x77[,5:8], state.x77[,1:4], panel=panel.smooth)

panel.my.symbols Draw Symbols (User Defined) on a Lattice Plot

Description

This function draws symbols on a lattice plot. It is similar to the builtin symbols function with the
difference that it plots symbols defined by the user rather than a prespecified set of symbols.

Usage

panel.my.symbols(x, y, symb, inches=1, polygon=FALSE,
..., symb.plots=FALSE, subscripts, MoreArgs)

Arguments

x, y The x and y coordinates for the position of the symbols to be plotted. These can
be specified in any way which is accepted by xy.coords.

symb Either a matrix, list, or function defining the symbol to be plotted. If it is a
matrix or list it needs to be formatted that it can be passed directly to the llines
function. It then defines the shape of the symbol on on a range/domain of -1 to
1. If this is a function it can either return a matrix or list as above (points on the
range/domain of -1 to 1).

inches The size of the square containing the symbol in inches (note: unlike symbols
this cannot be FALSE).

polygon If TRUE, use lpolygon function to plot rather than the llines function.
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symb.plots Currently not implemented.

... Additional arguments will be replicated to the same length as x then passed to
symb (if symb is a function) and/or the lines function (one value per symbol
drawn).

subscripts subscripts for the current panel

MoreArgs A list with any additional arguments to be passed to the symb function (as is,
without being replicated/split).

Details

The symb argument can be a 2 column matrix or a list with components ’x’ and ’y’ that defines
points on the interval [-1,1] that will be connected with lines to draw the symbol. If you want a
closed polygon then be sure to replicate the 1st point as the last point or use the polygon option.

If any point contains an NA then the line will not be drawn to or from that point. This can be used
to create a symbol with disjoint parts that should not be connected.

If symb is a function then any unmatched arguments that end up in the ’...’ argument will be repli-
cated to the same length as ’x’ (using the rep function) then the values will be passed one at a time
to the symb function. If MoreArgs is specified, the elements of it will also be passed to symb without
modification. The symb function can either return a matrix or list with the points that will then be
passed to the llines function (see above).

Value

This function is run for its side effect of plotting, it returns an invisible NULL.

Note

Plotting coordinates and sizes are based on the size of the device at the time the function is called.
If you resize the device after plotting, all bets are off.

Author(s)

Greg Snow <538280@gmail.com>

See Also

symbols, my.symbols, subplot, mapply, ms.polygram, lines

Examples

if(require(lattice)) {
tmpdf <- data.frame( x=1:10, y=1:10, g=factor(rep( c("A","B"), each=5 )),

z=c(1:5,5:1) )

xyplot( y ~ x, tmpdf, panel=panel.my.symbols, symb=ms.female, inches=0.3 )

xyplot( y ~ x | g, tmpdf, panel=panel.my.symbols, symb=ms.male, inches=0.3)

xyplot( y ~ x, tmpdf, panel=panel.superpose, groups=g,
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panel.groups= function(group.number, ...) {
if(group.number==1) {
panel.my.symbols(..., symb=ms.male)
} else {
panel.my.symbols(..., symb=ms.female)
} },
inches=0.3
)

xyplot( y ~ x, tmpdf, panel=panel.my.symbols, symb=ms.polygram, n=tmpdf$z,
inches=0.3)

xyplot( y ~ x | g, tmpdf, panel=panel.my.symbols, symb=ms.polygram,
n=tmpdf$z, inches=0.3)

xyplot( y ~ x, tmpdf, panel=panel.superpose, groups=g,
panel.groups = panel.my.symbols,
inches=0.3, symb=ms.polygon, n=tmpdf$z, polygon=TRUE,
adj=rep(c(0,pi/4),5)
)

}

petals Play the Petals Around the Rose game

Description

This plays the lateral thinking game Petals Around the Rose. This is a game where 5 regular dice
are rolled and the players then try to figure out how many petals are around the rose.

Usage

petals(plot = TRUE, txt = TRUE)

Arguments

plot Should the dice be plotted to the current/default graphics device.

txt Should the dice be shown in the console window using text.

Details

At least one of the arguments plot and txt needs to be true, otherwise you will be guessing blind
(or testing your psychic abilities).

The game is usually played with 5 physical dice, one person who knows the rules (the potentate of
the rose, here the computer), and one or more players trying to learn the puzzle. The potentate can
only give the players the following 3 rules:

1. The name of the game is "Petals Around the Rose" and the name is significant.
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2. The answer is always 0 or an even number.

3. The potentate can tell the answer for any roll after any guesses are made.

The potentate (or other player) then rolls the 5 dice and any players are then allowed to guess. The
potentate either confirms a correct guess or tells the correct answer, then the game continues with
another roll. Players are not to discuss their reasoning so that each can solve it themselves. When
a player thinks they have worked out the reasoning they demonstrate it by getting correct guesses,
but not by discussing it with anyone. Generally 6 correct guesses in a row is considered evidence
that they have figured out the rules and they are then considered a potentate of the rose.

For this implementation the computer will simulate the role of 5 dice and display the results and
ask for a guess of how many petals are around the rose. The player then enters their guess and the
computer then either confirms that it is correct or gives the correct answer.

Pressing enter without making a guess ends the game.

Value

This function only returns NULL, it is run for its side effects.

Note

Casual viewing of the function source code is unlikely to reveal the secret (and therefore this could
be used as an example of one way to disguise portions of code from casual examination). More
on disguising source code is at https://stat.ethz.ch/pipermail/r-devel/2011-October/
062236.html.

Some basic debugging can reveal the secret, but that would be cheating and an admission that such
a simple game has defeated you, so don’t do it, just keep playing until you figure it out.

Author(s)

Greg Snow, <538280@gmail.com>

References

http://www.borrett.id.au/computing/petals-bg.htm

See Also

dice

Examples

if(interactive()){
petals()

}

https://stat.ethz.ch/pipermail/r-devel/2011-October/062236.html
https://stat.ethz.ch/pipermail/r-devel/2011-October/062236.html
http://www.borrett.id.au/computing/petals-bg.htm


plot2script 53

plot2script Create a script from the current plot

Description

This function attempts to create a script that will recreate the current plot (in the graphics window).
You can then edit any parts of the script that you want changed and rerun to get the modified plot.

Usage

plot2script(file='clipboard')

Arguments

file The filename (the clipboard by default) for the script to create or append to.

Details

This function works with the graphics window and mainly traditional graphics (it may work with
lattice or other graphics, but has not really been tested with those).

This function creates a script file (or puts it on the clipboard so that you can past into a script window
or text editor) that will recreate the current graph in the current graph window. The script consists
of very low level functions (calls to plot.window and axis rather than letting plot handle all this).

If you want the higher level functions that were actually used, then use the history or savehistory
commands (this will probably be the better method for most cases).

Some of the low level plotting functions use different arguments to the internal version than the user
callable version (box for example), the arguments to these functions may need to be editted before
the full script will run correctly.

The lengths of command lines between the creation of the script and what can be run in R do not
always match, you may need to manually wrap long lines in the script before it will run properly.

Value

This function is run for its side effects and does not return anything meaningful.

Note

For any serious projects it is best to put your code into a script to begin with and edit the original
script rather than using this function.

This function depends on the recordPlot function which can change in any version. Therefore this
function should not be considered stable.

Author(s)

Greg Snow <538280@gmail.com>
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See Also

history, savehistory, recordPlot, source

Examples

if(interactive()){

# create a plot
plot(runif(10),rnorm(10))
lines( seq(0,1,length=10), rnorm(10,1,3) )

# create the script
plot2script()

# now paste the script into a script window or text processor.
# edit the ranges in plot.window() and change some colors or
# other options. Then run the script.
}

power.examp Graphically illustrate the concept of power.

Description

Create graphs of a normal test statistic under the null and alternative hypotheses to graphically show
the idea of power.

Usage

power.examp(n = 1, stdev = 1, diff = 1, alpha = 0.05, xmin = -2, xmax = 4)
run.power.examp(hscale=1.5, vscale=1.5, wait=FALSE)
run.power.examp.old()

Arguments

n The sample size for the test statistic.

stdev The standard deviation of the population.

diff The true difference in means (alternate hypothesis).

alpha The type I error rate to use for the test.

xmin The minimum x value to show on the graph.

xmax The maximum x value to show on the graph.

hscale Controls width of plot, passed to tkrplot.

vscale Controls height of plot, passed to tkrplot.

wait Should R wait for the window to close.
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Details

This function will draw 2 graphs representing an upper-tailed test of hypothesis.

The upper panel represents the test statistic under the null hypothesis that the true mean (or mean
difference) is 0. It then also shows the upper tail area equal to alpha and the rejection region for
the test statistic.

The lower panel shows the normal distribution for the test statistic under the alternative hypothesis
where the true mean (or mean difference) is diff. Using the rejection region from the upper panel
it shades the upper tail area that corresponds to the power of the test.

Both curves are affected by the specified stdev and sample size n.

The function run.power.examp will in addition create a Tk slider box that will allow you to in-
teractively change the values of stdev, diff, alpha, and n to dynamically see the effects of the
change on the graphs and on the power of the test.

This can be used to demonstrate the concept of power, show the effect of sample size on power,
show the inverse relationship between the type I and type II error rates, and show how power is
dependent on the true mean (or difference) and the population standard deviation.

Value

power.examp invisibly returns the power computed.

run.power.examp returns a list with the parameter settings and the power if wait is TRUE.

run.power.examp.old does not return anything meaningful.

Author(s)

Greg Snow <538280@gmail.com>

See Also

power.t.test

Examples

power.examp()
power.examp(n=25)
power.examp(alpha=0.1)

put.points.demo Demonstrate Correlation and Regression by placing and moving data
points

Description

Place data points on a graph to demonstrate concepts related to correlation and regression.
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Usage

put.points.demo(x = NULL, y = NULL, lsline = TRUE)

Arguments

x x-coordinates for initial points.

y y-coordinates for initial points.

lsline Logical, should the ls regresion line be included.

Details

The plot area is divided into 2 sections, the left section shows a scatterplot of your points, the right
panel controls what happens when you click in the left panel.

The top of the right panel has an "end" button that you click on to end the demonstration.

The middle right panel toggles the least squares line and information.

The bottom right panel has radio buttons that determine what clicking in the left panel will do, the
options are to add a point, delete a point, or move a point.

To move a point click on the point you want to move, it will become solid, then click in the place
you want it to move to.

When deleting or moving points, the closest point to where you click will be deleted or moved, even
if you click in an empty area.

Whenever you add, delete, or move a point the correlation, r^2, and regression line will be updated.
You can start with a set of points then demonstrate what happens to the correlation and regression
line when outliers are added or important points are moved or deleted.

Value

This function does not return anything.

Author(s)

Greg Snow <538280@gmail.com>

See Also

plot, cor

Examples

if(interactive()){
put.points.demo()

x <- rnorm(25, 5, 1)
y <- x + rnorm(25)
put.points.demo(x,y)
}
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Pvalue.norm.sim Simulate P-values

Description

Simulate and plot p-values from a normal or binomial based test under various conditions. When
all the assumptions are true, the p-values should follow an approximate uniform distribution. These
functions show that along with how violating the assumptions changes the distribution of the p-
values.

Usage

Pvalue.norm.sim(n = 50, mu = 0, mu0 = 0, sigma = 1, sigma0 = sigma,
test= c("z", "t"), alternative = c("two.sided", "less", "greater", "<>",

"!=", "<", ">"), alpha = 0.05, B = 10000)
Pvalue.binom.sim(n=100, p=0.5, p0=0.5, test=c('exact','approx'),

alternative=c('two.sided', 'less', 'greater',
'<>','!=','<','>'),
alpha=0.05, B=1000)

run.Pvalue.norm.sim()
run.Pvalue.binom.sim()

Arguments

n Sample Size for each simulated dataset

mu Simulation mean for samples

mu0 Hypothesized mean for tests

sigma Simulation SD for samples

sigma0 Hypothesized SD for tests, if blank or missing, use the sample SD in the tests

p Simulation proportion for samples

p0 Hypothesized proportion for tests

test Which test to use, "z" or "t" tests for normal, "exact" (binomial) or "approx"
(normal approximation) for binomial

alternative Direction for alternative hypothesis

alpha alpha level for test (optional)

B Number of simulated datasets

Details

These functions generate B samples from either a normal or binomial distribution, then compute the
P-values for the test of significance on each sample and plot the P-values.

The run.Pvalue.norm.sim and run.Pvalue.binom.sim functions are GUI wrappers for the other
2 functions allowing you to change the parameters and click on "refresh" to run a new set of simu-
lations.
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Using NA for sigma0 will result in the sample standard deviations being used (leave blank in the
GUI).

When the simulation conditions and the hypothesized values match, the distributions of the p-values
will be approximately uniform. Changing the parameter of interest will show the idea of power.
Changing the other parameters can show the effects of assumptions not being met.

Value

The P-values are invisibly returned.

Note

Note: the 2-sided p-values for the binomial may not match the results from binom.test and prop.test.
The method used here is an approximation for speed.

Author(s)

Greg Snow, <538280@gmail.com>

References

Murdock, D, Tsai, Y, and Adcock, J (2008) _P-Values are Random Variables_. The American
Statistician. (62) 242-245.

See Also

t.test, z.test, binom.test, prop.test, tkexamp

Examples

if(interactive()) {
run.Pvalue.norm.sim()
run.Pvalue.binom.sim()

}

rgl.coin Animated die roll or coin flip

Description

Open an rgl window, plot either a representation of a coin or a die then animate the flipping/rolling.
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Usage

rgl.coin(x, col = "black", heads = x[[1]], tails = x[[2]], ...)

rgl.die(x=1:6, col.cube = "white", col.pip = "black", sides = x, ...)

flip.rgl.coin(side = sample(2, 1), steps = 150)

roll.rgl.die(side = sample(6, 1), steps = 250)

Arguments

x for rgl.coin a list with information for drawing the faces of the coin, defaults
to coin.faces. For rgl.die a vector with the number of pips to put on the
sides of the die (alternative way of specifying sides).

col Color of lines on the coin faces.

heads Design to use as "heads" side of coin.

tails Design to use as "tails" side of coin.

col.cube Color of the cube for the die.

col.pip Color of the pips (spots) on the die

sides Vector of length 6 indicating which numbers to show on the die.

side Which side of the coin (1 or 2) or die (1 through 6) should end up face up.

steps The number of steps in each part of the animation, higher values will be smoother
and slower, lower values will be faster but more jumpy.

... Currently any additional options are silently ignored.

Details

You must use the plot function first to create the coin or die, then use the flip or roll function to start
the animation. You can animate multiple times for a single use of the plotting function.

You can manually rotate the image as well, see the rgl package for details.

The defaults plot a regular coin and die, but arguments are available to create special casses (2
headed coin, die with 2 6’s and no 1, ...).

The data list coin.faces contains information on designs for the faces of the coins in case you
want to choose a different design.

The default rolling and flipping options ranomly choose which side will be face up following a
uniform distribution. You can specify the side yourself, or use the sample function to do a biased
random flip/roll.

Value

Which side ended up face up (1 or 2 for coin, 1 through 6 for die). This is the internal numbering
and does not match a change in the sides argument.
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Note

The current algorithm for animating the die roll shows all the sides, but I am not satisfied with it.
Please suggest improvements.

Author(s)

Greg Snow <538280@gmail.com>

See Also

dice, plot.dice, coin.faces, sample

Examples

if(interactive()){
rgl.coin()
flip.rgl.coin()
flip.rgl.coin(1)
flip.rgl.coin(2)

rgl.clear()

# two-headed coin
rgl.coin(tails=coin.faces$qh)

rgl.clear()

# letters instead of pictures
rgl.coin(heads=coin.faces$H, tails=coin.faces$T)

# biased flip
flip.rgl.coin( sample(2,1, prob=c(0.65, 0.35) ) )

rgl.clear()

rgl.die()
roll.rgl.die()
roll.rgl.die(6)

# biased roll
roll.rgl.die( sample(6,1, prob=c(1,2,3,3,2,1) ) )
}

rgl.Map Plot a map in an rgl window

Description

Plots a map (from a Map object from package spData) on a unit sphere in an rgl window that can
then be interactively rotated.
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Usage

rgl.Map(Map, which, ...)

Arguments

Map An sfc_MULTIPOLYGON object

which Vector indicating the subset of polygons to plot.

... Additional arguments passed on to rgl.lines.

Details

This assumes that the map is cordinates in degrees and plots the map on a unit sphere in an rgl
window making a globe. You can then rotate the globe by clicking and dragging in the window.

Value

There is no return value, this function is run for its side effect.

Note

This function is still beta level software (some extra lines show up).

Author(s)

Greg Snow <538280@gmail.com>

See Also

rgl in package rgl, plot method in package sp

Examples

if(interactive()){

if(require("spData")) {
data(world)
rgl.Map(world$geom)
spheres3d(0,0,0,.999, col='lightblue')

}
}



62 roc.demo

roc.demo Demonstrate ROC curves by interactively building one

Description

This demonstration allows you to interactively build a Receiver Operator Curve to better understand
what goes into creating them.

Usage

roc.demo(x = rnorm(25, 10, 1), y = rnorm(25, 11, 1.5))

Arguments

x Data values for group 1 (controls).

y Data values for group 2 (cases).

Details

Density plots for the 2 groups will be created in the lower panel of the plot (colored red (group 1)
and blue (group 2)) along with rug plots of the actual datapoints. There is also a green vertical line
that represents a decision rule cutoff, any points higher than the cutoff are predicted to be in group
2 and points less than the cuttoff are predicted to be in group 1. The sensitivity and specificity for
the current cuttoff value are printed below the plot.

A Tk slider box is also created that allows you to move the cuttoff value and update the plots. As
the cutoff value changes, the different combinations of sensitivity and specificity are added to the
ROC curve in the top panel (the point corresponding to the current cuttoff value is highlighted in
red). A line is also drawn from the point representing sensitivity and specificity both equal to 1 to
the point closest to it.

Value

No meaninful value is returned, this function is run solely for the side effects.

Author(s)

Greg Snow <538280@gmail.com>

See Also

slider, ROC function in package Epi, auROC in package limma, package ROC
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Examples

if(interactive()){
roc.demo()
with(CO2,

roc.demo(uptake[Type=='Mississippi'],
uptake[Type=='Quebec'] )

)
}

rotate.cloud Interactively rotate 3D plots

Description

Interactively rotate common 3d plots: cloud, persp, and wireframe.

Usage

rotate.cloud(x, ...)
rotate.persp(x, y, z)
rotate.wireframe(x, ...)

Arguments

x x, see persp, or formula/matrix to pass to cloud or wireframe

y y, see persp

z z, see persp

... additional arguments passed on to cloud or persp

Details

Use these functions just like cloud, persp, and wireframe. In addition to the default plot a Tk
slider window will be created that will allow you to rotate the plot.

The rotations parameters are passed the screen argument of cloud and wireframe and the theta,
phi, r, d, ltheta, lphi, and shade arguments of persp.

For cloud and wireframe plots the order of the x, y, and z argumets can be rearanged, just type
the appropriate letters in the boxes on the left, then press the "refresh" button (changing the order
changes the plot for these 2 plots).

Value

These functions are run for the side effects of the plots and Tk windows, nothing meaninful is
returned.

Author(s)

Greg Snow <538280@gmail.com>



64 run.cor.examp

See Also

cloud it the lattice package, persp, wireframe in the lattice package

Examples

if(interactive()){
rotate.cloud(Sepal.Length ~ Petal.Length*Petal.Width, data=iris)

rotate.wireframe(volcano)

z <- 2 * volcano # Exaggerate the relief
x <- 10 * (1:nrow(z)) # 10 meter spacing (S to N)
y <- 10 * (1:ncol(z)) # 10 meter spacing (E to W)
rotate.persp(x,y,z)
}

run.cor.examp Interactively demonstrate correlations

Description

Make a scatterplot and a Tk slider window that allows you to interactively set the correlation and/or
R^2.

Usage

run.cor.examp(n=100, seed, vscale=1.5, hscale=1.5, wait=FALSE)
run.cor2.examp(n=100, seed, vscale=1.5, hscale=1.5, wait=FALSE)
run.old.cor.examp(n = 100, seed)
run.old.cor2.examp(n = 100, seed)

Arguments

n Number of points to plot.

seed What seed to use.

vscale Vertical scale passed to tkrplot.

hscale Horizontal scale passed to tkrplot.

wait Should R wait for the tk window to close.

Details

The function run.cor.examp draws a scatterplot and allows you to set the correlation using a Tk
slider window.

The function run.cor2.examp does the same, but has a slider for R^2 as well as the correlation,
when either slider is moved the other one will update to match.
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The 2 "old" versions use the default graphics device with a seperate window with the sliders, the
versions without "old" in the name include the plot and sliders together in a single tk window.

The size of the plot can be changed by changing the values in the hscale and vscale boxes and
clicking on the "Refresh" button.

Value

If wait is TRUE, then the return value is a list with the x and y values of the final plot.

If wait is FALSE (and in the "old" versions) an invisible NULL is returned.

Note

If wait is TRUE then R will wait until you click on the "Exit" button before you can use your R
session again. If wait is FALSE then the tk window will appear, but R will regain control so that
you can continue to use R as well as interact with the demonstration window.

Author(s)

Greg Snow <538280@gmail.com>

See Also

cor, tkexamp

Examples

if(interactive()) {
run.cor2.examp()

}

run.hist.demo Create a histogram and interactively change the number of bars.

Description

Create a histogram then use a Tk slider window to change the number of bars, the minimum, and
the maximum.

Usage

run.hist.demo(x)

Arguments

x Data to plot.
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Details

Draws a histogram and creates a Tk slider window that allows you to explore how changing the
parameters affects the appearance of the plot.

Value

No meaninful value is returned.

Author(s)

Greg Snow <538280@gmail.com>

See Also

hist, slider

Examples

if(interactive()){
run.hist.demo( rnorm(250, 100, 5) )
}

SensSpec.demo Demonstrate Sensitivity, Specificity, PPV, and NPV

Description

This function demonstrates how to get PPV and NPV from Sensitivity, Specificity, and Prevalence
by using a virtual population rather than a direct application of Bayes Rule. This approach is more
intuitive to mathphobes.

Usage

SensSpec.demo(sens, spec, prev, n = 100000, step = 11)

Arguments

sens Sensitivity (between 0 and 1)

spec Specificity (between 0 and 1)

prev Prevalence (between 0 and 1)

n Size of the virtual population (large round number)

step which step of the process to display
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Details

The common way to compute Positive Predictive Value (probability of disease given a positive test
(PPV)) and Negative Predictive Value (probability of no disease given negative test (NPV)) is to use
Bayes’ rule with the Sensitivity, Specificity, and Prevalence.

This approach can be overwhelming to non-math types, so this demonstration goes through the
steps of assuming a virtual population, then filling in a 2x2 table based on the population and given
values of Sensitivity, Specificity, and Prevalence. PPV and NPV are then computed from this table.
This approach is more intuitive to many people.

The function can be run multiple times with different values of step to show the steps in building
the table, then rerun with different values to show how changes in the inputs affect the results.

Value

An invisible matrix with the 2x2 table

Author(s)

Greg Snow, <538280@gmail.com>

See Also

roc.demo, fagan.plot, the various Epi packages, tkexamp

Examples

for(i in seq(1,11,2)) {
SensSpec.demo(sens=0.95, spec=0.99, prev=0.01, step=i)
if( interactive() ) {
readline("Press Enter to continue")

}
}

shadowtext Add text to a plot with a contrasting background.

Description

This is similar to the text function, but it also puts a background shadow (outline) behind the text to
make it stand out from the background better.

Usage

shadowtext(x, y = NULL, labels, col = "white", bg = "black",
theta = seq(pi/32, 2 * pi, length.out = 64), r = 0.1,
cex = 1, ...)
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Arguments

x x-coordinates for the text

y y-coordinates for the text

labels The text labels to plot

col Color of the text

bg Color of the background shadow

theta Angles for plotting the background

r Thickness of the shadow relative to plotting size

cex Character expansion passed through to text and used in computing text size.

... Additional arguments passed on to text

Details

When adding text to a plot it is possible that the color of the text may make it difficult to see relative
to its background. If the text spans different backgrounds then it may not be possible to find a single
color to give proper contrast.

This function creates a contrasting shadow for the text by first plotting several copies of the text at
angles theta and distance r in the background color, then plotting the text on top.

This gives a shadowing or outlining effect to the text making it easier to read on any background.

Value

This function is run for its side effects, returns NULL.

Author(s)

Greg Snow, <538280@gmail.com>, with improvements by Thomas Danhorn

See Also

text

Examples

plot(1:10, 1:10, bg='aliceblue')
rect(3,3,5,8, col='navy')
text(5,6, 'Test 1', col='lightsteelblue')
shadowtext(5,4, 'Test 2', col='lightsteelblue')
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sigma.test One sample Chi-square test for a population variance

Description

Compute the test of hypothesis and compute a confidence interval on the variance of a population.

Usage

sigma.test(x, sigma = 1, sigmasq = sigma^2,
alternative = c("two.sided", "less", "greater"), conf.level = 0.95, ...)

Arguments

x Vector of data values.

sigma Hypothesized standard deviation of the population.

sigmasq Hypothesized variance of the population.

alternative Direction of the alternative hypothesis.

conf.level Confidence level for the interval computation.

... Additional arguments are silently ignored.

Details

Many introductory statistical texts discuss inference on a single population variance and introduce
the chi-square test for a population variance as another example of a hypothesis test that can be
easily derived. Most statistical packages do not include the chi-square test, perhaps because it is not
used in practice very often, or because the test is known to be highly sensitive to nonnormal data.
For the two-sample problem, see var.test.

Value

An object of class htest containing the results

Note

This test is highly sensitive to nonnormality.

Author(s)

G. Jay Kerns <gkerns@ysu.edu>

See Also

var.test, print.htest
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Examples

x <- rnorm(20, mean = 15, sd = 7)
sigma.test(x, sigma = 6)

simfun Create a function to simulate data

Description

This function is used to create a new function that will simulate data. This could be used by a
teacher to create homework or test conditions that the students would then simulate data from (each
student could have their own unique data set) or this function could be used in simulations for power
or other values of interest.

Usage

simfun(expr, drop, ...)

Arguments

expr This is an expression, usually just one or more statements, that will generate the
simulated data.

drop A character vector of names of objects/columns that will be dropped from the
return value. These are usually intermediate objects or parameter values that
you don’t want carried into the final returned object.

... Additional named items that will be in the environment when expr is evaluated.

Details

This function creates another function to simulate data. You supply the general ideas of the simu-
lation to this function and the resulting function can then be used to create simulated datasets. The
resulting function can then be given to students for them to simulate datasets, or used localy as part
of larger simulations.

The environment where the expression is evaluated will have all the columns or elements of the
data argument available as well as the data argument itself. Any variables/parameters passed
through ... in the original function will also be available. You then supply the code based on those
variables to create the simulated data. The names of any columns or parameters submitted as part of
data will need to match the code exactly (provide specific directions to the users on what columns
need to be named). Rember that indexing using factors indexes based on the underlying integers
not the character representation. See the examples for details.

The resulting function can be saved and loaded/attached in different R sessions (it is important to
use save rather than something like dput so that the environment of the function is preserved).

The function includes an optional seed that will be used with the char2seed function (if the seed
is a character) so that each student could use a unique but identifiable seed (such as their name or
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something based on their name) so that each student will use a different dataset, but the instructor
will be able to generate the exact same dataset to check answers.

The "True" parameters are hidden in the environment of the function so the student will not see the
"true" values by simply printing the function. However an intermediate level R programmer/user
would be able to extract the simulation parameters (but the correct homework or test answer will
not be the simulation parameters).

Value

The return value is a function that will generate simulated datasets. The function will have 2 ar-
guments, data and seed. The data argument can be either a data frame of the predictor variables
(study design) or a list of simulation parameters. The seed argument will be passed on to set.seed
if it is numeric and char2seed if it is a character.

The return value of this function is a dataframe with the simulated data and any explanitory variables
passed to the function.

See the examples for how to use the result function.

Note

This function was not designed for speed, if you are doing long simulations then hand crafting the
simulation function will probably run quicker than one created using this function.

Like the prediction functions the data frame passed in as the data argument will need to have exact
names of the columns to match with the code (including capitolization).

This function is different from the simulate functions in that it allows for different sample sizes,
user specified parameters, and different predictor variables.

Author(s)

Greg Snow, <538280@gmail.com>

See Also

set.seed, char2seed, within, simulate, save, load, attach

Examples

# Create a function to simulate heights for a given dataset

simheight <- simfun( {h <- c(64,69); height<-h[sex]+ rnorm(10,0,3)}, drop='h' )

my.df <- data.frame(sex=factor(rep(c('Male','Female'),each=5)))
simdat <- simheight(my.df)
t.test(height~sex, data=simdat)

# a more general version, and have the expression predefined
# (note that this assumes that the levels are Female, Male in that order)

myexpr <- quote({
n <- length(sex)
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h <- c(64,69)
height <- h[sex] + rnorm(n,0,3)

})

simheight <- simfun(eval(myexpr), drop=c('n','h'))
my.df <- data.frame(sex=factor(sample(rep(c('Male','Female'),c(5,10)))))
(simdat <- simheight(my.df))

# similar to above, but use named parameter vector and index by names

myexpr <- quote({
n <- length(sex)
height <- h[ as.character(sex)] + rnorm(n,0,sig)

})

simheight <- simfun(eval(myexpr), drop=c('n','h','sig'),
h=c(Male=69,Female=64), sig=3)

my.df <- data.frame(sex=factor(sample(c('Male','Female'),100, replace=TRUE)))
(simdat <- simheight(my.df, seed='example'))

# Create a function to simulate Sex and Height for a given sample size
# (actually it will generate n males and n females for a total of 2*n samples)
# then use it in a set of simulations
simheight <- simfun( {sex <- factor(rep(c('Male','Female'),each=n))

height <- h[sex] + rnorm(2*n,0,s)
}, drop=c('h','n'), h=c(64,69), s=3)

(simdat <- simheight(list(n=10)))

out5 <- replicate(1000, t.test(height~sex, data=simheight(list(n= 5)))$p.value)
out15 <- replicate(1000, t.test(height~sex, data=simheight(list(n=15)))$p.value)

mean(out5 <= 0.05)
mean(out15 <= 0.05)

# use a fixed population

simstate <- simfun({
tmp <- state.df[as.character(State),]
Population <- tmp[['Population']]
Income <- tmp[['Income']]
Illiteracy <- tmp[['Illiteracy']]

}, state.df=as.data.frame(state.x77), drop=c('tmp','state.df'))
simstate(data.frame(State=sample(state.name,10)))

# Use simulation, but override setting the seed

simheight <- simfun({
set.seed(1234)
h <- c(64,69)
sex <- factor(rep(c('Female','Male'),each=50))
height <- round(rnorm(100, rep(h,each=50),3),1)
sex <- sex[ID]
height <- height[ID]
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}, drop='h')
(newdat <- simheight(list(ID=c(1:5,51:55))))
(newdat2<- simheight(list(ID=1:10)))

# Using a fitted object

fit <- lm(Fertility ~ . , data=swiss)
simfert <- simfun({

Fertility <- predict(fit, newdata=data)
Fertility <- Fertility + rnorm(length(Fertility),0,summary(fit)$sigma)

}, drop=c('fit'), fit=fit)

tmpdat <- as.data.frame(lapply(swiss[,-1],
function(x) round(runif(100, min(x), max(x)))))

names(tmpdat) <- names(swiss)[-1]
fertdat <- simfert(tmpdat)
head(fertdat)
rbind(coef(fit), coef(lm(Fertility~., data=fertdat)))

# simulate a nested mixed effects model
simheight <- simfun({

n.city <- length(unique(city))
n.state <- length(unique(state))
n <- length(city)
height <- h[sex] + rnorm(n.state,0,sig.state)[state] +
rnorm(n.city,0,sig.city)[city] + rnorm(n,0,sig.e)

}, sig.state=1, sig.city=0.5, sig.e=3, h=c(64,69),
drop=c('sig.state','sig.city','sig.e','h','n.city','n.state','n'))

tmpdat <- data.frame(state=gl(5,20), city=gl(10,10),
sex=gl(2,5,length=100, labels=c('F','M')))

heightdat <- simheight(tmpdat)

# similar to above, but include cost information, this assumes that
# each new state costs $100, each new city is $10, and each subject is $1
# this shows 2 possible methods

simheight <- simfun({
n.city <- length(unique(city))
n.state <- length(unique(state))
n <- length(city)
height <- h[sex] + rnorm(n.state,0,sig.state)[state] +
rnorm(n.city,0,sig.city)[city] + rnorm(n,0,sig.e)

cost <- 100 * (!duplicated(state)) + 10*(!duplicated(city)) + 1
cat('The total cost for this design is $', 100*n.state+10*n.city+1*n,
'\n', sep='')

}, sig.state=1, sig.city=0.5, sig.e=3, h=c(64,69),
drop=c('sig.state','sig.city','sig.e','h','n.city','n.state','n'))

tmpdat <- data.frame(state=gl(5,20), city=gl(10,10),
sex=gl(2,5,length=100, labels=c('F','M')))

heightdat <- simheight(tmpdat)
sum(heightdat$cost)
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# another mixed model method

simheight <- simfun({
state <- gl(n.state, n/n.state)
city <- gl(n.city*n.state, n/n.city/n.state)
sex <- gl(2, n.city, length=n, labels=c('F','M') )
height <- h[sex] + rnorm(n.state,0,sig.state)[state] +

rnorm(n.city*n.state,0,sig.city)[city] + rnorm(n,0,sig.e)
}, drop=c('n.state','n.city','n','sig.city','sig.state','sig.e','h'))

heightdat <- simheight( list(
n.state=5, n.city=2, n=100, sig.state=10, sig.city=3, sig.e=1, h=c(64,69)

))

slider slider / button control widgets

Description

slider constructs a Tcl/Tk-widget with sliders and buttons automated calculation and plotting. For
example slider allows complete all axes rotation of objects in a plot.

Usage

slider(sl.functions, sl.names, sl.mins, sl.maxs, sl.deltas, sl.defaults,
but.functions, but.names, no, set.no.value, obj.name, obj.value,
reset.function, title)

Arguments

sl.functions set of functions or function connected to the slider(s)

sl.names labels of the sliders

sl.mins minimum values of the sliders’ ranges

sl.maxs maximum values of the sliders’ ranges

sl.deltas change of step per click

sl.defaults default values for the sliders

but.functions function or list of functions that are assigned to the button(s)

but.names labels of the buttons

no slider(no=i) requests slider i

set.no.value slider(set.no.value=c(i,val)) sets slider i to value val

obj.name slider(obj.name=name) requests the value of variable name from environment
slider.env
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obj.value slider(obj.name=name,obj.value=value) assigns value to variable name
in environment slider.env

reset.function function that comprises the commands of the reset.button

title title of the control window

Details

With slider you can: a. define (multiple) sliders and buttons, b. request or set slider values, and c.
request or set variables in the environment slider.env. Slider function management takes place in
the environment slider.env. If slider.env is not found it is generated.

Definition: ... of sliders: First of all you have to define sliders, buttons and the attributes of them.
Sliders are established by six arguments: sl.functions, sl.names, sl.minima, sl.maxima,sl.deltas,
and sl.defaults. The first argument, sl.functions, is either a list of functions or a single func-
tion that entails the commands for the sliders. If there are three sliders and slider 2 is moved with
the mouse the function stored in sl.functions[[2]] (or in case of one function for all sliders the
function sl.functions) is called.

Definition: ... of buttons: Buttons are defined by a vector of labels but.names and a list of functions:
but.functions. If button i is pressed the function stored in but.functions[[i]] is called.

Requesting: ... a slider: slider(no=1) returns the actual value of slider 1, slider(no=2) returns
the value of slider 2, etc. You are allowed to include expressions of the type slider(no=i) in
functions describing the effect of sliders or buttons.

Setting: ... a slider: slider(set.no.value=c(2,333)) sets slider 2 to value 333. slider(set.no.value=c(i,value))
can be included in the functions defining the effects of moving sliders or pushing buttons.

Variables: ... of the environment slider.env: Sometimes information has to be trransferred back
and forth between functions defining the effects of sliders and buttons. Imagine for example two
sliders: one to control p and another one to control q, but they should satisfy: p+q=1. Consequently,
you have to correct the value of the first slider after the second one was moved. To prevent the cre-
ation of global variables store them in the environment slider.env. Use slider(obj.name="p.save",obj.value=1-slider(no=2))
to assign value 1-slider(no=2) to the variable p.save . slider(obj.name=p.save) returns the
value of variable p.save.

Value

Using slider in definition mode slider returns the value of new created the top level widget.
slider(no=i) returns the actual value of slider i. slider(obj.name=name) returns the value of
variable name in environment slider.env.

Note

You can move the slider in 3 different ways: You can left click and drag the slider itself, you can
left click in the trough to either side of the slider and the slider will move 1 unit in the direction you
clicked, or you can right click in the trough and the slider will jump to the location you clicked at.

This function may not stay in this package (consider it semi-depricated), the original of the slider
function is in the relax package and can be used from there. In TeachingDemos the tkexamp func-
tion is taking the place of slider and gives a possibly more general approach.
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Author(s)

Hans Peter Wolf

See Also

tkexamp, sliderv

Examples

# example 1, sliders only
## Not run:
## This example cannot be run by examples() but should work in an interactive R session
plot.sample.norm<-function(){
refresh.code<-function(...){
mu<-slider(no=1); sd<-slider(no=1); n<-slider(no=3)
x<-rnorm(n,mu,sd)
plot(x)

}
slider(refresh.code,sl.names=c("value of mu","value of sd","n number of observations"),

sl.mins=c(-10,.01,5),sl.maxs=c(+10,50,100),sl.deltas=c(.01,.01,1),sl.defaults=c(0,1,20))
}
plot.sample.norm()

## End(Not run)

# example 2, sliders and buttons
## Not run:
## This example cannot be run by examples() but should work in an interactive R session
plot.sample.norm.2<-function(){
refresh.code<-function(...){
mu<-slider(no=1); sd<-slider(no=2); n<-slider(no=3)
type= slider(obj.name="type")
x<-rnorm(n,mu,sd)
plot(seq(x),x,ylim=c(-20,20),type=type)

}
slider(refresh.code,sl.names=c("value of mu","value of sd","n number of observations"),

sl.mins=c(-10,.01,5),sl.maxs=c(10,10,100),sl.deltas=c(.01,.01,1),sl.defaults=c(0,1,20),
but.functions=list(

function(...){slider(obj.name="type",obj.value="l");refresh.code()},
function(...){slider(obj.name="type",obj.value="p");refresh.code()},
function(...){slider(obj.name="type",obj.value="b");refresh.code()}

),
but.names=c("lines","points","both"))

slider(obj.name="type",obj.value="l")
}
plot.sample.norm.2()

## End(Not run)

# example 3, dependent sliders
## Not run:
## This example cannot be run by examples() but should work in an interactive R session
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print.of.p.and.q<-function(){
refresh.code<-function(...){
p.old<-slider(obj.name="p.old")
p<-slider(no=1); if(abs(p-p.old)>0.001) {slider(set.no.value=c(2,1-p))}
q<-slider(no=2); if(abs(q-(1-p))>0.001) {slider(set.no.value=c(1,1-q))}
slider(obj.name="p.old",obj.value=p)
cat("p=",p,"q=",1-p,"\n")

}
slider(refresh.code,sl.names=c("value of p","value of q"),

sl.mins=c(0,0),sl.maxs=c(1,1),sl.deltas=c(.01,.01),sl.defaults=c(.2,.8))
slider(obj.name="p.old",obj.value=slider(no=1))

}
print.of.p.and.q()

## End(Not run)

# example 4, rotating a surface
## Not run:
## This example cannot be run by examples() but should work in an interactive R session
R.veil.in.the.wind<-function(){

# Mark Hempelmann / Peter Wolf
par(bg="blue4", col="white", col.main="white",

col.sub="white", font.sub=2, fg="white") # set colors and fonts
samp <- function(N,D) N*(1/4+D)/(1/4+D*N)
z<-outer(seq(1, 800, by=10), seq(.0025, 0.2, .0025)^2/1.96^2, samp) # create 3d matrix
h<-100
z[10:70,20:25]<-z[10:70,20:25]+h; z[65:70,26:45]<-z[65:70,26:45]+h
z[64:45,43:48]<-z[64:45,43:48]+h; z[44:39,26:45]<-z[44:39,26:45]+h
x<-26:59; y<-11:38; zz<-outer(x,y,"+"); zz<-zz*(65<zz)*(zz<73)
cz<-10+col(zz)[zz>0];rz<-25+row(zz)[zz>0]; z[cbind(cz,rz)]<-z[cbind(cz,rz)]+h
refresh.code<-function(...){

theta<-slider(no=1); phi<-slider(no=2)
persp(x=seq(1,800,by=10),y=seq(.0025,0.2,.0025),z=z,theta=theta,phi=phi,

scale=T, shade=.9, box=F, ltheta = 45,
lphi = 45, col="aquamarine", border="NA",ticktype="detailed")

}
slider(refresh.code, c("theta", "phi"), c(0, 0),c(360, 360),c(.2, .2),c(85, 270) )

}
R.veil.in.the.wind()

## End(Not run)

sliderv Create a Tk slider window

Description

Create a Tk slider window with the sliders positioned vertically instead of horizontally.
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Usage

sliderv(refresh.code, names, minima, maxima, resolutions, starts,
title = "control", no = 0, set.no.value = 0)

Arguments

refresh.code Function to be called when sliders are moved.

names Labels for the sliders.

minima Vector of minimum values for the sliders.

maxima Vector of maximum values for the sliders.

resolutions Vector of resolutions for the sliders.

starts Vector of starting values for the sliders.

title Title to put at the top of the Tk box.

no The number of the slider whose value you want.

set.no.value Vector of length 2 with the number of slider to set and the new value.

Details

This is a variation on the slider function with vertical sliders arranged in a row rather than hori-
zontal sliders arranged in a column.

This is based on an early version of slider and therefore does not have as many bells and whistles
(but sometimes fits the screen better).

Value

Returns the value of a given slider when used as: slider(no=i).

Note

You can move the slider in 3 different ways: You can left click and drag the slider itself, you can
left click in the trough to either side of the slider and the slider will move 1 unit in the direction you
clicked, or you can right click in the trough and the slider will jump to the location you clicked at.

This function may not stay in this package (consider it semi-depricated). See the tkexamp function
for another approach to do the same thing.

Author(s)

Greg Snow <538280@gmail.com>

See Also

tkexamp, slider
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Examples

if(interactive()){
face.refresh <- function(...){
vals <- sapply(1:15, function(x) slider(no=x))
faces( rbind(0, vals, 1), scale=F)

}

sliderv( face.refresh, as.character(1:15), rep(0,15), rep(1,15),
rep(0.05, 15), rep(0.5,15), title='Face Demo')

}

SnowsCorrectlySizedButOtherwiseUselessTestOfAnything

Snow’s Correctly Sized But Otherwise Useless Test of Anything

Description

This is a hypothesis test designed to be correctly sized in that the probability of rejecting the null
when it is true will be equal to your alpha level. Other than that it is a pretty useless test mainly
intended for when people say something like "I just need a p-value".

Usage

SnowsCorrectlySizedButOtherwiseUselessTestOfAnything(x,
data.name = deparse(substitute(x)),
alternative = "You Are Lucky", ..., seed)

Arguments

x The data, or nothing, or something equally irrelevant
data.name The name of the data for the output
alternative The phrase for the alternate hypothesis in the output
... Additional arguments that will be silently ignored (like x), future versions may

mockingly ignore these instead
seed A seed (numeric or character) used to seed the random number generator. Use

this or manually set the seed if you want reproducible (but still meaningless)
results

Details

Some of the advantages/disadvantages of this test include:

• The probability of a Type I error is alpha
• Power can be easily computed (it is alpha)
• Power is independent of the sample size
• Power is independent of the hypotheses
• This test is not affected by missing data (present data either)
• This test does not depend on any distributional or independence assumptions
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Value

An object of class htest with the following elements:

p.value The p-value

statistic The test statistic (identical to the p-value)

data.name The name of the data (if any)

method The name of the test

alternative a phrase representing the alternative hypothesis

seed optionally the seed that was used

Note

If someone has suggested that you consider this test, they most likely do not intend for you to
actually use the test, rather to reconsider your question or the assumptions that you are making or
trying to avoid. This test should only be used to illustrate a point and decisions (other than maybe
who should pay for lunch) should never be made based on the results of this test.

Author(s)

Greg Snow <538280@gmail.com>

References

The author is unlikely to be willing to publish in any "journal" that would be willing to publish this
test.

fortune(264)

See Also

runif

Examples

SnowsCorrectlySizedButOtherwiseUselessTestOfAnything(log(rnorm(100)))

SnowsPenultimateNormalityTest

Test the uninteresting question of whether the data represents an exact
normal distribution.

Description

This function tests the null hypothesis that the data comes from an exact normal population. This
is a much less interesting/useful null than what people usually want, which is to know if the data
come from a distribution that is similar enough to the normal to use normal theory inference.
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Usage

SnowsPenultimateNormalityTest(x)

Arguments

x The data

Details

The theory for this test is based on the probability of getting a rational number from a truly contin-
uous distribution defined on the reals.

The main goal of this test is to quickly give a p-value for those that feel it necessary to test the
uninteresting and uninformative null hypothesis that the data represents an exact normal, and allows
the user to then move on to much more important questions, like "is the data close enough to the
normal to use normal theory inference?".

After running this test (or better instead of running this and any other test of normality) you should
ask yourself what it means to test for normality and why you would want to do so. Then plot the
data and explore the interesting/useful questions.

Value

An object of class "htest" with components:

p.value The p-value

alternative a string representing the alternative hypothesis

method a string describing the method

data.name a string describing the name of the data

Note

Note: if you just use this function and report the p-value then the function has failed in its purpose. If
this function helps you to think about your analysis and what question(s) you are really interested in,
create meaningful plots, and focus on the more meaningful parts of research, then it has succeeded.
See also Cochrane’s Aphorism.

Author(s)

Greg Snow <538280@gmail.com>

References

fortune(234)

See Also

qqnorm, vis.test
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Examples

SnowsPenultimateNormalityTest(rt(100,25))

spread.labs Spread out close points for labeling in plots

Description

This function takes as set of coordinates and spreads out the close values so that they can be used
in labeling plots without overlapping.

Usage

spread.labs(x, mindiff, maxiter = 1000, stepsize = 1/10, min = -Inf, max = Inf)

Arguments

x The coordinate values (x or y, not both) to spread out.

mindiff The minimum distance between return values

maxiter The maximum number of iterations

stepsize How far to move values in each iteration

min Minimum bound for returned values

max Maximum bound for returned values

Details

Sometimes the desired locations for labels in plots results in the labels overlapping. This function
takes the coordinate values (x or y, not both) and finds those points that are less than mindiff
(usually a function of strheight or strwidth) apart and increases the space between them (by
stepsize * mindiff). This may or may not be enough and moving some points away from their
nearest neighbor may move them too close to another neighbor, so the process is iterated until either
maxiter steps have been tried, or all the values are at least mindiff apart.

The min and max arguments prevent the values from going outside that range (they should be spec-
ified such that the original values are all inside the range).

The values do not need to be presorted.

Value

A vector of coordinates (order corresponding to the original x) that can be used as a replacement
for x in placing labels.

Author(s)

Greg Snow, <538280@gmail.com>
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See Also

text, the spread.labels function in the plotrix package.

Examples

# overlapping labels
plot(as.integer(state.region), state.x77[,1], ylab='Population',
xlab='Region',xlim=c(1,4.75), xaxt='n')

axis(1, at=1:4, lab=levels(state.region) )

text( as.integer(state.region)+.5, state.x77[,1], state.abb )
segments( as.integer(state.region)+0.025, state.x77[,1],

as.integer(state.region)+.375, state.x77[,1] )

# now lets redo the plot without overlap

tmp.y <- state.x77[,1]
for(i in levels(state.region) ) {

tmp <- state.region == i
tmp.y[ tmp ] <- spread.labs( tmp.y[ tmp ], 1.2*strheight('A'),
maxiter=1000, min=0 )

}

plot(as.integer(state.region), state.x77[,1], ylab='Population',
xlab='Region', xlim=c(1,4.75), xaxt='n')

axis(1, at=1:4, lab=levels(state.region) )

text( as.integer(state.region)+0.5, tmp.y, state.abb )
segments( as.integer(state.region)+0.025, state.x77[,1],

as.integer(state.region)+0.375, tmp.y )

squishplot Squish the plotting area to a specified aspect ratio

Description

Adjusts the plotting area to a specific aspect ratio. This is different from using the asp argument in
that it puts the extra space in the margins rather than inside the plotting region.

Usage

squishplot(xlim, ylim, asp = 1, newplot=TRUE)

Arguments

xlim The x limits of the plot, or the entire x vector.

ylim The y limits of the plot, or the entire y vector.

asp The y/x aspect ratio.

newplot Should plot.new() be called before making the calculations.
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Details

This function sets the plot area of the current graph device so that the following plot command will
plot with the specified aspect ratio.

This is different from using the asp argument to plot.default in where the created white space
goes (see the example). Using plot.default will place the whitespace within the plotting region
and can result in the axes and annotations being quite far from the actual data. This command sets
up the plotting region so that the extra whitespace is in the margin areas and moves the axes and
annotations close to the data.

Any other desired parameter settings or resizing of the graphics device should be set before calling
squishplot, especially settings dealing with multiple figures or margin areas.

After plotting, the parameters need to be reset or later plots may come out wrong.

Value

Invisible list containing the ’plt’ values from par that were in place before the call to squishplot
that can be used to reset the graphical parameters after plotting is finished.

Note

Remember to set other graphical parameters, then call squishplot, then call the plotting func-
tion(s), then reset the parameters.

Author(s)

Greg Snow <538280@gmail.com>

See Also

plot.default, plot.window, par

Examples

x <- rnorm(25, 10, 2 )
y <- 5 + 1.5*x + rnorm(25,0,2)

par(mfrow=c(1,3))
plot(x,y)

op <- squishplot(x,y,1)
plot(x,y)
par(op)

plot(x,y, asp=1)
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steps Steps data

Description

This is the export from a pedometer worn for nearly about 11 months by the package author.

Usage

data(steps)

Format

A data frame with 331 observations on the following 79 variables.

Date The Date for the given data

Total.Steps Total Steps recorded for the day

Aerobic.Steps Total Aerobic Steps recorded for the day (see below)

Aerobic.Walking.Time Time spent in aerobic walking for the day

Calories Estimated calories burned for the day

Distance Estimated distance walked for the day in miles

Fat.Burned Estimated grams of fat burned by walking

Steps.12AM Steps recorded between Midnight and 1 am

Steps.1AM Steps recorded between 1 am and 2 am

Steps.2AM Steps recorded between 2 am and 3 am

Steps.3AM Steps recorded between 3 am and 4 am

Steps.4AM Steps recorded between 4 am and 5 am

Steps.5AM Steps recorded between 5 am and 6 am

Steps.6AM Steps recorded between 6 am and 7 am

Steps.7AM Steps recorded between 7 am and 8 am

Steps.8AM Steps recorded between 8 am and 9 am

Steps.9AM Steps recorded between 9 am and 10 am

Steps.10AM Steps recorded between 10 am and 11 am

Steps.11AM Steps recorded between 11 am and Noon

Steps.12PM Steps recorded between Noon and 1 pm

Steps.1PM Steps recorded between 1 pm and 2 pm

Steps.2PM Steps recorded between 2 pm and 3 pm

Steps.3PM Steps recorded between 3 pm and 4 pm

Steps.4PM Steps recorded between 4 pm and 5 pm

Steps.5PM Steps recorded between 5 pm and 6 pm
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Steps.6PM Steps recorded between 6 pm and 7 pm

Steps.7PM Steps recorded between 7 pm and 8 pm

Steps.8PM Steps recorded between 8 pm and 9 pm

Steps.9PM Steps recorded between 9 pm and 10 pm

Steps.10PM Steps recorded between 10 pm and 11 pm

Steps.11PM Steps recorded between 11 pm and Midnight

Aerobic.Steps.12AM Aerobic steps recorded between Midnight and 1 am

Aerobic.Steps.1AM Aerobic steps recorded between 1 am and 2 am

Aerobic.Steps.2AM Aerobic steps recorded between 2 am and 3 am

Aerobic.Steps.3AM Aerobic steps recorded between 3 am and 4 am

Aerobic.Steps.4AM Aerobic steps recorded between 4 am and 5 am

Aerobic.Steps.5AM Aerobic steps recorded between 5 am and 6 am

Aerobic.Steps.6AM Aerobic steps recorded between 6 am and 7 am

Aerobic.Steps.7AM Aerobic steps recorded between 7 am and 8 am

Aerobic.Steps.8AM Aerobic steps recorded between 8 am and 9 am

Aerobic.Steps.9AM Aerobic steps recorded between 9 am and 10 am

Aerobic.Steps.10AM Aerobic steps recorded between 10 am and 11 am

Aerobic.Steps.11AM Aerobic steps recorded between 11 am and Noon

Aerobic.Steps.12PM Aerobic steps recorded between Noon and 1 pm

Aerobic.Steps.1PM Aerobic steps recorded between 1 pm and 2 pm

Aerobic.Steps.2PM Aerobic steps recorded between 2 pm and 3 pm

Aerobic.Steps.3PM Aerobic steps recorded between 3 pm and 4 pm

Aerobic.Steps.4PM Aerobic steps recorded between 4 pm and 5 pm

Aerobic.Steps.5PM Aerobic steps recorded between 5 pm and 6 pm

Aerobic.Steps.6PM Aerobic steps recorded between 6 pm and 7 pm

Aerobic.Steps.7PM Aerobic steps recorded between 7 pm and 8 pm

Aerobic.Steps.8PM Aerobic steps recorded between 8 pm and 9 pm

Aerobic.Steps.9PM Aerobic steps recorded between 9 pm and 10 pm

Aerobic.Steps.10PM Aerobic steps recorded between 10 pm and 11 pm

Aerobic.Steps.11PM Aerobic steps recorded between 11 pm and Midnight

Used.12AM Any movement detected between Midnight and 1 am

Used.1AM Any movement detected between 1 am and 2 am

Used.2AM Any movement detected between 2 am and 3 am

Used.3AM Any movement detected between 3 am and 4 am

Used.4AM Any movement detected between 4 am and 5 am

Used.5AM Any movement detected between 5 am and 6 am

Used.6AM Any movement detected between 6 am and 7 am
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Used.7AM Any movement detected between 7 am and 8 am
Used.8AM Any movement detected between 8 am and 9 am
Used.9AM Any movement detected between 9 am and 10 am
Used.10AM Any movement detected between 10 am and 11 am
Used.11AM Any movement detected between 11 am and Noon
Used.12PM Any movement detected between Noon and 1 pm
Used.1PM Any movement detected between 1 pm and 2 pm
Used.2PM Any movement detected between 2 pm and 3 pm
Used.3PM Any movement detected between 3 pm and 4 pm
Used.4PM Any movement detected between 4 pm and 5 pm
Used.5PM Any movement detected between 5 pm and 6 pm
Used.6PM Any movement detected between 6 pm and 7 pm
Used.7PM Any movement detected between 7 pm and 8 pm
Used.8PM Any movement detected between 8 pm and 9 pm
Used.9PM Any movement detected between 9 pm and 10 pm
Used.10PM Any movement detected between 10 pm and 11 pm
Used.11PM Any movement detected between 11 pm and Midnight

Examples

data(steps)
## maybe str(steps) ; plot(steps) ...

stork Neyman’s Stork data

Description

Data invented by Neyman to look at spurious correlations and adjusting for lurking variables by
looking at the relationship between storks and biths.

Usage

data(stork)

Format

A data frame with 54 observations on the following 6 variables.

County ID of county
Women Number of Women (*10,000)
No.storks Number of Storks sighted
No.babies Number of Babies Born
Stork.rate Storks per 10,000 women (=No.storks/Women)
Birth.rate Babies per 10,000 women (=No.babies/Women)
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Details

This is an entertaining example to show a relationship that is due to a third possibly lurking variable.
The source paper shows how completely different relationships can be found by mis-analyzing the
data.

Source

Kronmal, Richard A. (1993) Spurious Cerrolation and the Fallacy of the Ratio Standard Revisited.
Journal of the Royal Statistical Society. Series A, Vol. 156, No. 3, 379-392.

References

Neyman, J. (1952) Lectures and Conferences on Mathematical Statistics and Probability, 2nd edn,
pp. 143-154. Washington DC: US Department of Agriculture.

Examples

data(stork)
pairs(stork[,-1], panel=panel.smooth)
## maybe str(stork) ; plot(stork) ...

subplot Embed a new plot within an existing plot

Description

Subplot will embed a new plot within an existing plot at the coordinates specified (in user units of
the existing plot).

Usage

subplot(fun, x, y, size=c(1,1), vadj=0.5, hadj=0.5,
inset=c(0,0), type=c('plt','fig'), pars=NULL)

Arguments

fun an expression defining the new plot to be embedded.

x x-coordinate(s) of the new plot (in user coordinates of the existing plot), or a
character string.

y y-coordinate(s) of the new plot, x and y can be specified in any of the ways
understood by xy.coords.

size The size of the embedded plot in inches if x and y have length 1.

vadj vertical adjustment of the plot when y is a scalar, the default is to center verti-
cally, 0 means place the bottom of the plot at y, 1 places the top of the plot at
y.
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hadj horizontal adjustment of the plot when x is a scalar, the default is to center
horizontally, 0 means place the left edge of the plot at x, and 1 means place the
right edge of the plot at x.

inset 1 or 2 numbers representing the proportion of the plot to inset the subplot from
edges when x is a character string. The first element is the horizontal inset, the
second is the vertical inset.

type Character string, if ’plt’ then the plotting region is defined by x, y, and size
with axes, etc. outside that box; if ’fig’ then all annotations are also inside the
box.

pars a list of parameters to be passed to par before running fun.

Details

The coordinates x and y can be scalars or vectors of length 2. If vectors of length 2 then they
determine the opposite corners of the rectangle for the embedded plot (and the parameters size,
vadj, and hadj are all ignored).

If x and y are given as scalars then the plot position relative to the point and the size of the plot will
be determined by the arguments size, vadj, and hadj. The default is to center a 1 inch by 1 inch
plot at x,y. Setting vadj and hadj to (0,0) will position the lower left corner of the plot at (x,y).

If x is a character string, then it will be parsed for the strings "left", "right", "top", and "bottom" and
x and y will be set appropriately (anything not specified will be set at the center in that dimension)
using also the inset argument. This allows the position of the subplot to be specified as ’topleft’ or
’bottom’, etc. The inset argument is in proportion of the plot units, so 0.1 means inset 10% of the
width/height of the plotting distance. If hadj/vadj are not specified, they will be set appropriately.

The rectangle defined by x, y, size, vadj, and hadj will be used as the plotting area of the new
plot. Any tick marks, axis labels, main and sub titles will be outside of this rectangle if type is ’plt’.
If type is ’fig’ then the annotations will be inside the box.

Any graphical parameter settings that you would like to be in place before fun is evaluated can be
specified in the pars argument (warning: specifying layout parameters here (plt, mfrow, etc.) may
cause unexpected results).

After the function completes the graphical parameters will have been reset to what they were before
calling the function (so you can continue to augment the original plot).

Value

An invisible list with the graphical parameters that were in effect when the subplot was created.
Passing this list to par will enable you to augment the embedded plot.

Author(s)

Greg Snow <538280@gmail.com>

See Also

grconvertX, par, symbols, my.symbols, ms.image
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Examples

# make an original plot
plot( 11:20, sample(51:60) )

# add some histograms

subplot( hist(rnorm(100)), 15, 55)
subplot( hist(runif(100),main='',xlab='',ylab=''), 11, 51, hadj=0, vadj=0)
subplot( hist(rexp(100, 1/3)), 20, 60, hadj=1, vadj=1, size=c(0.5,2) )
subplot( hist(rt(100,3)), c(12,16), c(57,59), pars=list(lwd=3,ask=FALSE) )

### some of the following examples work fine in an interactive session,
### but loading the packages required does not work well in testing.

# augment a map
if( interactive() && require(spData) ){
plot(state.vbm,fg=NULL)
tmp <- cbind( state.vbm$center_x, state.vbm$center_y )
for( i in 1:50 ){
tmp2 <- as.matrix(USArrests[i,c(1,4)])
tmp3 <- max(USArrests[,c(1,4)])
subplot( barplot(tmp2, ylim=c(0,tmp3),names=c('',''),yaxt='n'),
x=tmp[i,1], y=tmp[i,2], size=c(.1,.1))

}
}

tmp <- rnorm(25)
qqnorm(tmp)
qqline(tmp)
tmp2 <- subplot( hist(tmp,xlab='',ylab='',main=''),

grconvertX(0.1,from='npc'), grconvertY(0.9,from='npc'),
vadj=1, hadj=0 )

abline(v=0, col='red') # wrong way to add a reference line to histogram

# right way to add a reference line to histogram
op <- par(no.readonly=TRUE)
par(tmp2)
abline(v=0, col='green')
par(op)

# scatter-plot using images
if(interactive() && require(png)) {

image.png <- function(x,...) {
cols <- rgb( x[,,1], x[,,2], x[,,3], x[,,4] )
z <- 1:length(cols)
dim(z) <- dim(x[,,1])
z <- t(z)
z <- z[ ,rev(seq_len(ncol(z))) ]
image(z, col=cols, axes=FALSE, ...)

}
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logo <- readPNG(system.file("img", "Rlogo.png", package="png"))

x <- runif(10)
y <- runif(10)
plot(x,y, type='n')
for(i in 1:10) {
subplot(image.png(logo), x[i], y[i], size=c(0.3,0.3))

}
}

TkApprox Plot a set of data in a Tk window and interactively move lines to see
predicted y-values corresponding to selected x-values.

Description

This function plots a dataset in a Tk window then places 3 lines on the plot which show a predicted
y value for the given x value. The lines can be clicked on and dragged to new x-values with the
predicted y-values automatically updating. A table at the bottom of the graph shows the differences
between the pairs of x-values and y-values.

Usage

TkApprox(x, y, type = "b", snap.to.x = FALSE, digits = 4,
cols = c("red", "#009900", "blue"), xlab = deparse(substitute(x)),
ylab = deparse(substitute(y)), hscale = 1.5, vscale = 1.5,
wait = TRUE, ...)

Arguments

x The x-values of the data, should be sorted

y The corresponding y-values of the data

type Type of plot (lines, points, both) passed to plot

snap.to.x If True then the lines will snap to x-values (can be changed with a checkbox in
the Tk window)

digits Number of significant digits to display (passed to format)

cols Vector of 3 colors, used for the reference lines

xlab Label for x-axis

ylab Label for y-axis

hscale Horizontal Scale of the plot, passed to tkrplot

vscale Vertical Scale of the plot, passed to tkrplot

wait Should R wait for the window to be closed

... Additional parameters passed to plot
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Details

This provides an interactive way to explore predictions from a set of x and y values. Internally the
function approxfun is used to make the predictions.

The x-value of the 3 reference lines can be changed by clicking and dragging the line to a new
position. The x and y values are shown in the margins of the graph. Below the graph is a table with
the differences (absolute value) between the pairs of points.

This can be used to find peaks/valleys in trends and to see how they differ from starting points, other
peaks/valleys, etc..

Value

If wait is FALSE then an invisible NULL is returned, if wait is TRUE then an invisible list with
the x and y values of the 3 reference lines is returned.

Author(s)

Greg Snow <538280@gmail.com>

See Also

approxfun, TkSpline

Examples

if(interactive()) {
with(ccc, TkApprox(Time2,Elevation))

}

tkBrush Change the Color and Styles of points interactively

Description

Creates a Tk window with a scatterplot matrix, then allows you to "brush" the points to change their
color and/or style.

Usage

tkBrush(mat,hscale=1.75,vscale=1.75,wait=TRUE,...)

Arguments

mat A matrix of the data to plot, columns are variables, rows are observations, same
as pairs

hscale Passed to tkrplot

vscale Passed to tkrplot

wait Should the function wait for you to finish, see below
... Additional arguments passed to the panel functions
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Details

This function creates a Tk window with a pairs plot of mat, then allows you to interactively move a
rectangle (the brush) over the points to change their color and plotting character.

The arrow keys can be used to change the size and shape of the brush. The left arrow makes the
rectangle wider, the right makes it narrower. The up arrow key makes it taller, the right makes it
shorter.

When the mouse button is not pressed the points inside the brush will change while in the brush,
but return to their previous state when the brush moves off them. If the mouse button is pressed
then the points inside the brush will be changed and the change will remain until a different set of
conditions is brushed on them.

The style of the brushed points is determined by the values of the 2 entry boxes on the right side of
the plot. You can specify the plotting character in the pch box, this can be anything that you would
regularly pass to the pch argument of points, e.g. an integer or single character. You can specify
the color of the brushed points using the color entry box, specify the name of any color recognized
by R (see colors), if this box does not contain a legal color name then black will be used.

If wait is FALSE then the Tk window will exist independently of R and you can continue to do
other things in the R window, in this case the function returns NULL. If wait is TRUE then R
waits for you to close the Tk window (using the quit button) then returns a list with the colors and
plotting characters resulting from your brushing, this information can be used to recreate the plot
using pairs on a new graphics device (for printing or saving).

Value

Either NULL (if Wait=FALSE) or a list with components col and pch corresponding to the state of
the points.

Author(s)

Greg Snow <538280@gmail.com>

See Also

pairs,colors,points, the iplots package

Examples

if(interactive()){

# Iris dataset

out1 <- tkBrush(iris)

# Now brush the points

pairs(iris, col=out1$col, pch=out1$pch)

# or

colhist <- function(x,...){
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tmp <- hist(x,plot=F)
br <- tmp$breaks
w <- as.numeric(cut(x,br,include.lowest=TRUE))
sy <- unlist(lapply(tmp$counts,function(x)seq(length=x)))
my <- max(sy)
sy <- sy/my
my <- 1/my
sy <- sy[order(order(x))]
tmp.usr <- par('usr'); on.exit(par(usr=tmp.usr))
par(usr=c(tmp.usr[1:2],0,1.5))
rect(br[w], sy-my, br[w+1], sy,

col=out1$col, # note out1$col is hardcoded here.
border=NA)

rect(br[-length(br)], 0, br[-1], tmp$counts*my)
}
pairs(iris, col=out1$col, pch=out1$pch, diag.panel=colhist)

# some spheres

s1 <- matrix(nrow=0,ncol=3)

while( nrow(s1) < 1000 ){
tmp <- rnorm(3)
if( sum(tmp^2) <= 1 ){
s1 <- rbind(s1,tmp)
}

}

s2 <- matrix(rnorm(3000), ncol=3)
s2 <- s2/apply(s2,1,function(x) sqrt(sum(x^2)))

tkBrush(s1, wait=FALSE)
tkBrush(s2, wait=FALSE)

# now paint values where var 2 is close to 0 in both plots
# and compare the var 1 and var 3 relationship

}

TkBuildDist Interactively create a probability distribution.

Description

Build a probability distribution (one option for creating a prior distribution) by clicking or dragging
a plot.
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Usage

TkBuildDist(x = seq(min + (max - min)/nbin/2, max - (max - min)/nbin/2,
length.out = nbin), min = 0, max = 10, nbin = 10, logspline = TRUE,
intervals = FALSE)

TkBuildDist2( min=0, max=1, nbin=10, logspline=TRUE)

Arguments

x A starting set of data points, will default to a sequence of uniform values.

min The minimum value for the histogram

max The maximum value for the histogram

nbin The number of bins for the histogram

logspline Logical, whether to include a logspline curve on the plot and in the output.

intervals Logical, should the logspline fit be based on the interval counts rather than the
clicked data points, also should the interval summary be returned.

Details

Bothe of these functions will open a Tk window to interact with. The window will show a histogram
(the defaults will show a uniform distribution), optionally a logspline fit line will be included as well.
Including the logspline will slow things down a bit, so you may want to skip it on slow computers.

If you use the TkBuildDist function then a left click on the histogram will add an additional point
to the histogram bar clicked on (the actual x-value where clicked will be saved, returned, and used
in the optional logspline unless intervals is TRUE). Right clicking on the histogram will remove
the point closest to where clicked (based only on x), which will usually have the effect of decreasing
the clicked bar by 1, but could affect the neigboring bar if you click near the edge or click on a bar
that is 0.

If you use the TkBuildDist2 function then the individual bars can be adjusted by clicking at the
top of a bar and dragging up or down, or clicking at what you want the new height of the bar to be.
As the current bar is adjusted the other bars will adjust in the oposite direction proportional to their
current heights.

The logspline fit assumes the basis for the distribution is the real line, the min and max arguments
only control the histogram and where values can be changed.

Value

Both functions return a list with the breaks that were used the logspline fit (if logspline is TRUE),
the x-values clicked on (for TkBuildDist), and the proportion of the distribution within each inter-
val (for TkBuildDist2 or if intervals is TRUE).

Author(s)

Greg Snow <538280@gmail.com>
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See Also

The logspline package

Examples

if(interactive()){
tmp1 <- TkBuildDist()
tmp2 <- TkBuildDist2()
}

tkexamp Create Tk dialog boxes with controls to show examples of changing
parameters on a graph.

Description

This utility will create a Tk window with a graph and controls to change the parameters of the
plotting function interactively.

Usage

tkexamp(FUN, param.list, vscale=1.5, hscale=1.5, wait=FALSE,
plotloc='top', an.play=TRUE, print=FALSE, ...)

Arguments

FUN A function call to create the example plot

param.list A list of lists with information on the parameters to control and the controls to
use. See Details Below

vscale Vertical size of plot, passed to tkrplot

hscale Horizontal size of plot, passed to tkrplot

wait Should R wait for the demo to end

plotloc Character with "top", "left", or "right" indicating where the plot should be placed
relative to the controls

an.play Should the scheduling in tcltk2 package be used for animations

print Automatically print the result (useful for ggplot2/lattice)

... Extra arguments, currently ignored
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Details

This is a helper function to create interactive demonstrations of the effect of various function argu-
ments on the resulting graph.

The FUN argument should be a function call to create the basic plot (if run stand alone this should
create the starting plot). The arguments to be changed should not be included.

The param.list is a nested list of lists that defines which controls to use for which function argu-
ments. Additional levels of nested lists creates groups of controls (see examples below) and if the
list is named in the enclosing list, that name will be used to label the group.

The lowest level of lists control a single function argument with the control to be used. The name of
the list in the enclosing list is the name of the function argument to be used, e.g. "pch=list(...)"
will create a control for the pch parameter.

The first element of the innermost list is a character string specifying which control to use (from
the list below), the rest of the elements must be named and specify parameters of the controls. For
details on all possible parameters see the tcltk documentation. Any parameter can be set using this
list, for example most controls have a width parameter that can be set with code like width=5.
Most controls also have an init argument that specifies the initial value that the control will be set
to (most have a default in case you don’t specify the value).

The following are the possible controls you can specify as the first element of the list along with the
most common parameters to specify:

"numentry", an entry box where a number can be typed in, this will be passed to FUN wrapped in
as.numeric().

"entry", an entry box where a character string can be typed in (this will be passed to FUN as a
character string, not converted).

"slider", a slider (or scale) that can be dragged left and right to choose the different values. The com-
mon parameters to specify are "from" (the lowest value), "to" (the largest value), and "resolution"
(the increment size when sliding).

"vslider", just like slider except that the slider is dragged up and down rather than left and right.

"spinbox", an entry widget for a number with small arrows on the right side that can be used to
increment/decrement the value, or you can type in a value. The common parameters to set are
"from" (smallest value), "to" (largest value), and "increment" (how much to change the value by
when clicking on the arrows). You can also set "values" which is a vector of values that can be
used. This will be passed to FUN as a number.

"checkbox", a box that can be checked, passed to FUN as a logical (TRUE if checked, FALSE if not
checked). To set the intial value as TRUE (the default is FALSE) use init='T'.

"combobox", an entry widget with an arrow on the right side that will bring up a list of values to
choose from. This value is passed to FUN as a character string. The important parameter to set is
"values" which is a vector of character strings to choose between. This option will only work with
tcl version 8.5 or later and will probably produce an error in earlier versions.

"radiobuttons", a set of choices with check boxes next to each, when one is selected the previous
selection is cleared. The important parameter to set is "values" wich is a vector of character strings
to choose between.

"animate", is a combination of a slider and a button. If the tcltk2 package is avaliable and an.play=TRUE
then the button will say "Play" and pressing the button will automatically increment the slider (and
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update the graph) until it reaches the maximum value. Otherwise the button will say "Inc" and you
must click and hold on the button to run the animation (this might be prefered in that you can stop
the animation). Either way you can set the delay option (all other options match with the slider op-
tion) and move the slider when the interaction is not happening. The animation starts at the current
value on the slider and goes to the maximum value. You should only have at most one animation
control (multiple will confuse each other), this includes not having multiple windows operating at
the same time with animation controls.

Each nesting of lists will also change how the controls are placed (top to bottom vs. left to right).

The Tk window will also have a default set of controls at the bottom. These include entry widgets
for vscale and hscale for changing the size of the graph (initially set by arguments to tkexamp).
A "Refresh" button that will refresh the graph with the new parameter values (some controls like
sliders will automatically refresh, but others like entries will not refresh on their own and you will
need to click on this button to see the updates). A "Print Call" button that when clicked will print
a text string to the R terminal that represents the function call with the current argument settings
(copying and pasting this to the command line should recreate the current plot on the current plotting
device). And an "Exit" button that will end the demo and close the window.

Value

If wait is FALSE then it returns an invisible NULL, if wait is TRUE then it returns a list with the
argument values when the window was closed.

Note

You can move the sliders in 3 different ways: You can left click and drag the slider itself, you can
left click in the trough to either side of the slider and the slider will move 1 unit in the direction you
clicked, or you can right click in the trough and the slider will jump to the location you clicked at.

Author(s)

Greg Snow, <538280@gmail.com>

See Also

tkrplot, the fgui package, the playwith package, and the rpanel package

Examples

if(interactive()) {

x <- sort( runif(25,1,10) )
y <- rnorm(25, x)

# some common plotting parameters

tke.test1 <- list(Parameters=list(
pch=list('spinbox',init=1,from=0,to=255,width=5),
cex=list('slider',init=1.5,from=0.1,to=5,resolution=0.1),
type=list('combobox',init='b',

values=c('p','l','b','o','c','h','s','S','n'),
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width=5),
lwd=list('spinbox',init=1,from=0,to=5,increment=1,width=5),
lty=list('spinbox',init=1,from=0,to=6,increment=1,width=5)
))

tkexamp( plot(x,y), tke.test1, plotloc='top' )

# different controls for the parameters

tke.test2 <- list(Parameters=list(
pch=list('spinbox',init=1,values=c(0:25,32:255),width=5),
cex=list('slider',init=1.5,from=0.1,to=5,resolution=0.1),
type=list('radiobuttons',init='b',

values=c('p','l','b','o','c','h','s','S','n'),
width=5),

lwd=list('spinbox',init=1,from=0,to=5,increment=1,width=5),
lty=list('spinbox',init=1,from=0,to=6,increment=1,width=5),
xpd=list('checkbox')
))

tkexamp( plot(x,y), tke.test2, plotloc='left')

tmp <- tkexamp( plot(x,y), list(tke.test2), plotloc='right', wait=TRUE )

# now recreate the plot
tmp$x <- x
tmp$xlab <- 'x'
tmp$y <- y
tmp$ylab <- 'y'
do.call('plot', tmp)

# a non plotting example

tke.test3 <- list(
sens=list('slider', init=0.95, from=0.9, to=1, resolution=0.005),
spec=list('slider', init=0.9, from=0.8, to=1, resolution=0.005),
prev=list('slider', init=0.01, from=0.0001, to=0.1, resolution=0.0001),
step=list('spinbox', init=1, from=1, to=11, width=5),
n=list('numentry',init=100000, width=7)

)

options(scipen=1)
tkexamp( SensSpec.demo(), tke.test3 )
# now increment step and watch the console

# Above example but converting it to plot

tempfun <- function(sens,spec,prev,step,n) {
if(missing(sens) || missing(n)) return(invisible(NULL))
tmp <- capture.output( SensSpec.demo(sens=sens,spec=spec,

prev=prev, n=n, step=step) )
par(cex=2.25)
plot.new()
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tmp2 <- strheight(tmp)
text(0, 1-cumsum(tmp2*1.5), tmp, family='mono', adj=0)
title('Sensitivity and Specificity Example')

}

tkexamp( tempfun(), tke.test3, hscale=4, vscale=2 )

# an example using trellis graphics

tke.test4 <- list(
alpha=list('slider', from=0,to=1,init=1,

resolution=0.05),
cex=list('spinbox',init=.8,from=.1,to=3,increment=.1,width=5),
col=list('entry',init='#0080ff'),
pch=list('spinbox',init=1, from=0,to=255,

increment=1,width=5),
fill=list('entry',init='transparent')

)

tempfun <- function(x,y,alpha,cex,col,pch,fill) {
if(missing(alpha) || missing(cex)) {return()}
trellis.par.set(plot.symbol=list(alpha=alpha, cex=cex, col=col,

font=1,pch=pch,fill=fill))
print(xyplot( y~x ))

}

require(lattice)

tkexamp( tempfun(x,y), list(tke.test4), plotloc='left')

# Two example using ggplot2

if( require(ggplot2) ) {

## 1
tkexamp( qplot(cty,data=mpg, geom='histogram'),

list(binwidth=list('slider',from=1,to=25)),
print=TRUE)

## 2
tmpfun <- function(bw=2){
print(ggplot(mpg, aes(cty)) +

geom_histogram(binwidth = bw))
}

tkexamp( tmpfun, list(bw=list('slider',from=1, to=5)))

}

}
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TkListView Interactivly view structures of list and list like objects.

Description

This is somewhat like the str function, except that it creates a new Tk window and a tree object
representing the list or object. You can then click on the ’+’ signs to expand branches of the list to
see what they contain.

Usage

TkListView(list)

Arguments

list The list or object to be viewed.

Details

This function opens a Tk window with a tree view of the list in the leftmost pane. Next to the tree
is the result from the str function for each element of the list. Clicking on the ’+’ symbol next to
list elements will expand the tree branch to show what that list/sublist contains. On the right is an
output pane with 3 buttons below it. These can be used by first selecting (clicking on) a list element
in the left pane (this can be a whole list or single element), then clicking on one of the buttons.
The output from the button appears in the right pane (replacing anything that may have been there
before). The ’print’ button just prints the element/sublist selected. The ’str’ button calls the str
function on the selected element/list/sublist. The ’Eval:’ button will evaluate the code in the entry
box next to it with the selected element of the list being the ’x’ variable. For example you could
click on an element in the list that is a numeric vector, type ’hist(x)’ in the entry box, and click
on the ’Eval:’ button to produce a histogram (current/default R graphics device) of the data in that
element.

any lists/objects with attributes will show the attributes as an additional branch in the tree with a
label of "«attributes»".

This function works on S3 objects that are stored as lists. Since currently S4 objects are saved
as attributes, wrapping them in a list will work with this function to view their structure, see the
example below.

Value

This function is ran for its side effects, it does not return anything of use.

Author(s)

Greg Snow, <538280@gmail.com>

See Also

str
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Examples

if(interactive()) {
tmp <- list( a=letters, b=list(1:10, 10:1), c=list( x=rnorm(100),

z=data.frame(x=rnorm(10),y=rnorm(10))))
TkListView(tmp)

fit <- lm(Petal.Width ~ ., data=iris)
TkListView(fit)

if(require(stats4)){
# this example is copied almost verbatim from ?mle

x <- 0:10
y <- c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8)
ll <- function(ymax=15, xhalf=6)

-sum(stats::dpois(y, lambda=ymax/(1+x/xhalf), log=TRUE))
(fit <- mle(ll))
TkListView(list(fit))

}
}

TkPredict Plot predicted values from a model against one of the predictors for a
given value of the othe predictors

Description

These functions create a plot of predicted values vs. one of the predictors for given values of the
other predictors. TkPredict further creates a Tk gui to allow you to change the values of the other
predictors.

Usage

Predict.Plot(model, pred.var, ..., type='response', add=FALSE,
plot.args=list(), n.points=100, ref.val, ref.col='green', ref.lty=1,
data)
TkPredict(model, data, pred.var, ...)

Arguments

model A model of class ’lm’ or ’glm’ (or possibly others) from which to plot predic-
tions.

pred.var A character string indicating which predictor variable to put on the x-axis of the
plot.

... for Predict.Plot The predictor variables and their values for the predictions.
See below for detail.

type The type value passed on to the predict function.



TkPredict 103

add Whether to add a line to the existing plot or start a new plot.

plot.args A list of additional options passed on to the plotting function.

n.points The number of points to use in the approximation of the curve.

ref.val A reference value for the pred.var, a reference line will be drawn at this value
to the corresponding predicted value.

ref.col, ref.lty
The color and line type of the reference line if plotted.

data The data frame or environment where the variables that the model was fit to are
found. If missing, the model will be examined for an attempt find the needed
data.

Details

These functions plot the predicted values from a regression model (lm or glm) against one of the
predictor variables for given values of the other predictors. The values of the other predictors are
passed as the ... argument to Predict.Plot or are set using gui controls in TkPredict (initial
values are the medians).

If the variable for the x axis (name put in pred.var) is not included with the ... variables, then the
range will be computed from the data argument or the data component of the model argument.

If the variable passed as pred.var is also included in the ... arguments and contains a single value,
then this value will be used as the ref.val argument.

If it contains 2 or more values, then the range of these values will be used as the x-limits for the
predictions.

When running TkPredict you can click on the "Print Call" button to print out the call of Predict.Plot
that will recreate the same plot. Doing this for different combinations of predictor values and edit-
ing the plot.args and add arguments will give you a script that will create a static version of the
predictions.

Value

These functions are run for their side effects of creating plots and do not return anything.

Note

The GUI currently allows you to select a factor as the x-variable. If you do this it will generate
some errors and you will not see the plot, just choose a different variable as the x-variable and the
plot will return.

Author(s)

Greg Snow, <538280@gmail.com>

See Also

tkrplot, tkexamp, predict
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Examples

library(splines)

fit.lm1 <- lm( Sepal.Width ~ ns(Petal.Width,3)*ns(Petal.Length,3)+Species,
data=iris)

Predict.Plot(fit.lm1, pred.var = "Petal.Width", Petal.Width = 1.22,
Petal.Length = 4.3, Species = "versicolor",

plot.args = list(ylim=range(iris$Sepal.Width), col='blue'),
type = "response")

Predict.Plot(fit.lm1, pred.var = "Petal.Width", Petal.Width = 1.22,
Petal.Length = 4.3, Species = "virginica",

plot.args = list(col='red'),
type = "response", add=TRUE)

Predict.Plot(fit.lm1, pred.var = "Petal.Width", Petal.Width = 1.22,
Petal.Length = 4.4, Species = "virginica",

plot.args = list(col='purple'),
type = "response", add=TRUE)

fit.glm1 <- glm( Species=='virginica' ~ Sepal.Width+Sepal.Length,
data=iris, family=binomial)

Predict.Plot(fit.glm1, pred.var = "Sepal.Length", Sepal.Width = 1.99,
Sepal.Length = 6.34, plot.args = list(ylim=c(0,1), col='blue'),

type = "response")
Predict.Plot(fit.glm1, pred.var = "Sepal.Length", Sepal.Width = 4.39,

Sepal.Length = 6.34, plot.args = list(col='red'),
type = "response", add=TRUE)

if(interactive()){
TkPredict(fit.lm1)

TkPredict(fit.glm1)
}

TkSpline Plot a set of data in a Tk window and interactively move a line to see
predicted y-values from a spline fit corresponding to selected x-values.

Description

This function plots a dataset in a Tk window then draws the spline fit through the points. It places
a line to show the predicted y from the given x value. The line can be clicked on and dragged to
new x-values with the predicted y-values automatically updating. A table at the bottem of the graph
shows the values and the 3 derivatives.
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Usage

TkSpline(x, y, method='natural', snap.to.x=FALSE, digits=4,
col=c('blue','#009900','red','black'),
xlab=deparse(substitute(x)), ylab=deparse(substitute(y)),
hscale=1.5, vscale=1.5, wait=TRUE,
...)

Arguments

x The x-values of the data, should be sorted

y The corresponding y-values of the data

method Spline Method, passed to splinefun

snap.to.x Logical, if TRUE then the line will only take on the values of x

digits Number of digits to print, passed to format

col Colors of the prediction and other lines

xlab Label for the x-axis, passed to plot

ylab Label for the y-axis, passed to plot

hscale Horizontal scaling, passed to tkrplot

vscale Vertical scaling, passed to tkrplot

wait Should R wait for the window to close

... Additional parameters passed to plot

Details

This provides an interactive way to explore predictions from a set of x and y values. Internally the
function splinefun is used to make the predictions.

The x-value of the reference line can be changed by clicking and dragging the line to a new position.
The x and y values are shown in the margins of the graph. Below the graph is a table with the y-value
and derivatives.

Value

If wait is FALSE then an invisible NULL is returned, if wait is TRUE then an invisible list with
the x and y values and derivatives is returned.

Author(s)

Greg Snow <538280@gmail.com>

See Also

splinefun, TkApprox
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Examples

if(interactive()) {
x <- 1:10
y <- sin(x)
TkSpline(x,y, xlim=c(0,11))

}

towork Sample data downloaded and converted from a GPS unit

Description

These are GPS information from 3 trips.

Format

Data frames with the following variables.

Index Measurement number
Time a POSIXt, Time of measurement
Elevation a numeric vector, Elevation in Feet
Leg.Dist a character/numeric vector, The distance traveled in that leg (in feet for ccc)
Leg.Time a difftime, the time of that leg
Speed a numeric vector, Speed in mph
Direction a numeric vector, Direction in Degrees, 0 is North, 90 is East, 180 is South, 270 is West
LatLon a character vector, Latitude and Longitude as characters
Leg.Dist.f a numeric vector, Length of that leg in feet
Leg.Dist.m a numeric vector, Length of that leg in miles
Lat a numeric vector, Numeric latitude
Lon a numeric vector, Numeric longitude (negative for west)
Distance a numeric vector, Distance from start in feet
Distance.f a numeric vector, Distance from start in feet
Distance.m a numeric vector, Distance from start in miles
Time2 a difftime, Time from start
Time3 a difftime, cumsum of Leg.Time

Details

The data frame ccc came from when I was walking back to my office from a meeting and decided
to take the scenic route and started the GPS.

The data frame h2h is a trip from my office to another for a meeting. The first part is traveling by
car, the last part by foot from the parking lot to the building. Speed is a mixture of distributions.

The data frame towork came from driving to work one morning (the first point is where the GPS
got it’s first lock, not my house). The overall trip was mostly NorthWest but with enough North and
NorthEast that a simple average of direction shows SouthEast, good example for circular stats.
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Source

My GPS device

Examples

if( interactive() ){
with(ccc, TkApprox(Distance, Elevation))

}

tree.demo Interactively demonstrate regression trees

Description

Interactively recursively partition a dataset to demonstrate regression trees.

Usage

tree.demo(x, y)

Arguments

x The predictor variable.

y The response variable.

Details

This function first creates a scatterplot of x and y and shows the residual sum of squares from fitting
a horizontal line to the y-values.

Clicking anywhere on the graph will show an updated graph where the data is partitioned into 2
groups based on the x-value where you clicked with a horizontal line fit to each group (including
showing the updated residual sum of squares). Clicking again will move the partitioning value
based on the new click.

When you have found a good partitioning (reduces the RSS), right click and choose ’stop’ and that
partition will become fixed. Now you can click to do a second set of partions (breaking the data
into 3 groups).

To finish the demo, right click and choose ’stop’, then right click again and choose ’stop’ again.

Value

A vector with the x-values of the cut points that you selected (sorted).

Author(s)

Greg Snow <538280@gmail.com>
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See Also

The rpart and tree packages

Examples

if(interactive()){
data('ethanol', package='lattice')
print(with(ethanol, tree.demo(E,NOx)))
}

triplot Create or add to a Trilinear Plot

Description

Create (or add to) a trilinear plot of 3 proportions that sum to 1.

Usage

triplot(x, y = NULL, z = NULL, labels = dimnames(x)[[2]],
txt = dimnames(x)[[1]], legend = NULL, legend.split = NULL,
inner = TRUE, inner.col = c("lightblue", "pink"), inner.lty = c(2, 3),
add = FALSE, main = "", ...)

Arguments

x Vector or matrix of up to 3 columns.

y Vector (if x is a vector).

z Vector (if x is a vector).

labels Labels for the 3 components (printed at corners).

txt Vector of text strings to be plotted instead of points.

legend Labels for the data points

legend.split What proportion of the labels will go on the left.

inner Logical, should the inner reference lines be plotted.

inner.col Colors for the 2 inner triangles.

inner.lty Line types for the 2 inner triangles.

add Add points to existing plot (TRUE), or create a new plot (FALSE).

main Main title for the plot.

... Additional arguments passed on to points or text.
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Details

Trilinear plots are useful for visualizing membership in 3 groups by plotting sets of 3 proportions
that sum to 1 within each set.

The data can be passed to the function as a matrix with either 2 or 3 columns, or as seperate vectors
to x, y, and optionaly z. If 2 columns are passed in, then they must be between 0 and 1 and the 3rd
column will be created by subtracting both from 1. If 3 columns of data are given to the function
then each will be divided by the sum of the 3 columns (they don’t need to sum to 1 before being
passed in).

Value

An invisible matrix with 2 columns and the same number of rows as x corresponding to the points
plotted (after transforming to 2 dimensions).

The return matrix can be passed to identify for labeling of individual points.

Using type='n' and add=FALSE will return the transformed points without doing any plotting.

Author(s)

Greg Snow <538280@gmail.com>

References

Allen, Terry. Using and Interpreting the Trilinear Plot. Chance. 15 (Summer 2002).

See Also

triangle.plot in package ade4, ternaryplot in package vcd, tri in package cwhtool, soil.texture
and triax.plot in package plotrix.

Examples

triplot(USArrests[c(1,4,2)])
tmp <- triplot(USArrests[c(1,4,2)],txt=NULL)
if(interactive()){ identify(tmp, lab=rownames(USArrests) ) }

tmp <- rbind( HairEyeColor[,,'Male'], HairEyeColor[,,'Female'])
tmp[,3] <- tmp[,3] + tmp[,4]
tmp <- tmp[,1:3]
triplot(tmp, legend=rep(c('Male','Femal'),each=4),
col=rep(c('black','brown','red','yellow'),2))
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txtStart Save a transcript of commands and/or output to a text file.

Description

These functions save a transcript of your commands and their output to a script file, possibly for
later processing with the "enscript" or "pandoc" program.

They work as a combinations of sink and history with a couple extra bells and whistles.

Usage

txtStart(file, commands=TRUE, results=TRUE, append=FALSE, cmdfile,
visible.only=TRUE)

txtStop()

txtComment(txt,cmdtxt)

txtSkip(expr)

etxtStart(dir = tempfile("etxt"), file = "transcript.txt",
commands = TRUE, results = TRUE, append = FALSE,
cmdbg = "white", cmdcol = "red", resbg = "white",
rescol = "navy", combg = "cyan", comcol = "black",
cmdfile, visible.only = TRUE)

etxtStop()

etxtComment(txt, cmdtxt)

etxtSkip(expr)

etxtPlot(file=paste(tempfile('plot',R2txt.vars$dir),'.eps',sep=''),
width=4, height=4)

wdtxtStart(commands=TRUE, results=TRUE, fontsize=9, cmdfile,
visible.only=TRUE)

wdtxtStop()

wdtxtComment(txt,cmdtxt)

wdtxtSkip(expr)

wdtxtPlot(height=5, width=5, pointsize=10)
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mdtxtStart(dir=tempfile('mdtxt'), file='transcript.md',
commands=TRUE, results=TRUE, append=FALSE,
cmdfile, visible.only=TRUE)

mdtxtStop()

mdtxtComment(txt,cmdtxt)

mdtxtSkip(expr)

mdtxtPlot(file=tempfile('plot',R2txt.vars$dir,'.png'),
width=4, height=4)

Arguments

dir Directory to store transcript file and any graphics file in

file Text file to save transcript in

commands Logical, should the commands be echoed to the transcript file

results Logical, should the results be saved in the transcript file

append Logical, should we append to file or replace it

cmdbg Background color for command lines in file

cmdcol Color of text for command lines in file

resbg Background color for results sections in file

rescol Text color of results sections in file

combg Background color for comments in file

comcol Text color of comments in file

cmdfile A filename to store commands such that it can be sourced or copied and pasted
from

visible.only Should non-printed output be included, not currently implemented.

txt Text of a comment to be inserted into file

cmdtxt Text of a comment to be inserted into cmdfile

expr An expression to be executed without being included in file or cmdfile

width Width of plot, passed to dev.copy2eps, wdPlot, or dev.copy

height Height of plot, passed to dev.copy2eps, wdPlot, or dev.copy

fontsize Size of font to use in MSWord

pointsize passed to wdPlot

Details

These functions are used to create transcript/command files of your R session. There are 4 sets
of functions, those starting with "txt",those starting with "etxt", and those starting with "wdtxt"
and those starting with "mdtxt". The "txt" functions create a plain text transcript while the "etxt"
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functions create a text file with extra escapes and commands so that it can be post processed with
enscript (an external program) to create a postscript file and can include graphics as well. The
postscript file can be converted to pdf or other format file.

The "wdtxt" functions will insert the commands and results into a Microsoft Word document.

The "mdtxt" functions create a text file but with MarkDown escapes so that it can be post processed
with "pandoc" (an external program) to create other formats such as html, pdf, MS Word documents,
etc. If the command starts with the string "pander" or "pandoc" (after optional whitespace) then the
results will be inserted directly, without escapes, into the transcript file. This assumes that you
are using code from the "pander" package which generates markdown formatted output. This will
create nicer looking tables and other output.

If results is TRUE and commands is FALSE then the result is similar to the results of sink. If
commands is true as well then the transcript file will show both the commands and results similar
to the output on the screen. If both commands and results are FALSE then pretty much the only
thing these functions will accomplish is to waste some computing time.

If cmdfile is specified then an additional file is created with the commands used (similar to the
history command), this file can be used with source or copied and pasted to the terminal.

The Start functions specify the file/directory to create and start the transcript, wdtxtStart will
open Word if it is not already open or create a connection to an open word window. The prompts
are changed to remind you that the commands/results are being copied to the transcript. The Stop
functions stop the recording and reset the prompts.

The R parser strips comments and does some reformatting so the transcript file may not match ex-
actly with the terminal output. Use the txtComment, etxtComment, wdtxtComment, or mdtxtComment
functions to add a comment. This will show up as a line offset by whitespace in the transcript file,
highlighted in the etxt version, and the default font in Word. If cmdtxt is specified then that line
will be inserted into cmdfile preceded by a # so it will be skipped if sourced or copied.

The txtSkip, etxtSkip, wdtxtSkip, and mdtxtSkip functions will run the code in expr but will
not include the commands or results in the transcript file (this can be used for side computations, or
requests for help, etc.).

The etxtPlot function calls dev.copy2eps to create a copy of the current plot and inserts the
proper command into the transcript file so that the eps file will be included in the final postscript
file after processing.

The wdtxtPlot function calls wdPlot to send a copy of the current graph to MS Word.

The mdtxtPlot function calls dev.copy to create a copy of the current plot as a .png file and inserts
the proper command into the transcript file so that the .png file will be included when processing
with pandoc.

Value

Most of these commands do not return anything of use. The exceptions are:

etxtStop returns the name of the transcript file (including the directory path).

txtSkip, etxtSkip, wdtxtSkip, and mdtxtSkip return the value of expr.



txtStart 113

Note

These commands do not do any fancy formatting of output, just what you see in the regular terminal
window. If you want more formatted output then you should look into Sweave, knitr, or the
R2HTML package.

The MS word functions will insert into the current word document at the location of the cursor. This
means that if you look at the document and move the current location to somewhere in the middle
(or have another word document open with the location in the middle), when you go back to R, the
new transcript will be inserted into the middle of the document. So be careful to position the cursor
at the end of the correct document before going back to R. Note that the "wdtxt" functions depend
on the "R2wd" package which in turn depends on tools that are not free.

Do not use these functions in combination with R2HTML or sink. Only one of these sets of
functions will work at a time.

Author(s)

Greg Snow, <538280@gmail.com>

See Also

sink, history, Sweave, the odfWeave package, the R2HTML package, the R2wd package, the
pander package

Examples

## Not run:
etxtStart()
etxtComment('This is todays transcript')
date()
x <- rnorm(25)
summary(x)
stem(x)
etxtSkip(?hist)
hist(x)
etxtPlot()
Sys.Date()
Sys.time()
my.file <- etxtStop()

# assumes enscript and ps2pdf are on your path
system(paste('enscript -e -B -p transcript.ps ', my.file) )
system('ps2pdf transcript.ps')

# if the above commands used mdtxt instead of etxt and the pandoc
# program is installed and on your path (and dependent programs) then use:
system(paste('pandoc -o transcript.docx ', my.file))

## End(Not run)
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updateusr Updates the ’usr’ coordinates in the current plot.

Description

For a traditional graphics plot this function will update the ’usr’ coordinates by transforming a pair
of points from the current usr coordinates to those specified.

Usage

updateusr(x1, y1 = NULL, x2, y2 = NULL)

Arguments

x1 The x-coords of 2 points in the current ’usr’ coordianates, or anything that can
be passed to xy.coords.

y1 The y-coords of 2 points in the current ’usr’ coordinates, or an object represent-
ing the points in the new ’usr’ coordinates.

x2 The x-coords for the 2 points in the new coordinates.

y2 The y-coords for the 2 points in the new coordinates.

Details

Sometimes graphs (in the traditional graphing scheme) end up with usr coordinates different from
expected for adding to the plot (for example barplot does not center the bars at integers). This
function will take 2 points in the current ’usr’ coordinates and the desired ’usr’ coordinates of the 2
points and transform the user coordinates to make this happen. The updating only shifts and scales
the coordinates, it does not do any rotation or warping transforms.

If x1 and y1 are lists or matricies and x2 and y2 are not specified, then x1 is taken to be the
coordinates in the current system and y1 is the coordinates in the new system.

Currently you need to give the function exactly 2 points in each system. The 2 points cannot have
the same x values or y values in either system.

Value

An invisible list with the previous ’usr’ coordinates from par.

Note

Currently you need to give coordinates for exactly 2 points without missing values. Future versions
of the function will allow missing values or multiple points.

Author(s)

Greg Snow, <538280@gmail.com>
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See Also

par

Examples

tmp <- barplot(1:4)
updateusr(tmp[1:2], 0:1, 1:2, 0:1)
lines(1:4, c(1,3,2,2), lwd=3, type='b',col='red')

# update the y-axis to put a reference distribution line in the bottom
# quarter

tmp <- rnorm(100)
hist(tmp)
tmp2 <- par('usr')
xx <- seq(min(tmp), max(tmp), length.out=250)
yy <- dnorm(xx, mean(tmp), sd(tmp))
updateusr( tmp2[1:2], tmp2[3:4], tmp2[1:2], c(0, max(yy)*4) )
lines(xx,yy)

USCrimes US Crime Statistics

Description

This is a 3 dimensional Array of the US crime statistics downloaded from the "Uniform Crime
Reporting Statistics" of the US government. It comprises the years 1960 through 2010 for all 50
states, Washington DC, and a total for the country.

Usage

data(USCrimes)

Format

The format is: num [1:52, 1:51, 1:19] 3266740 226167 1302161 1786272 15717204 ... - attr(*,
"dimnames")=List of 3 ..$ State: chr [1:52] "Alabama" "Alaska" "Arizona" "Arkansas" ... ..$ : chr
[1:51] "1960" "1961" "1962" "1963" ... ..$ : chr [1:19] "Population" "ViolentCrimeRate" "Murder-
Rate" "RapeRate" ...

Details

The first dimension is the state, the dimnames match the variable state.name with the exception
of including "District of Columbia" in the 9th position (alphabetically) and "United States-Total" in
position 45 (alphabetical).

The second dimension is the year, ranging from 1960 to 2010. If indexing by year, remember to put
the year in quotes.

The third dimension is the variable:
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Population: Total number of residents

ViolentCrimeRate: The total of the violent crimes (Murder, Rape, Robbery, Assault) per 100,000
population

MurderRate: The number of Murders and Nonnegligent Manslaughters per 100,000 population

RapeRate: Forcible Rapes per 100,000 population

RobberyRate: Robberies per 100,000 population

AssaultRate: Aggravated Assults per 100,000

PropertyCrimeRate: The total of the property crimes (Burglary, Theft, Vehicle Theft) per 100,000
population

BurglaryRate: Burglaries per 100,000 population

TheftRate: Larceny-Thefts per 100,000 population

VehicleTheftRate: Motor Vehicle Thefts per 100,000 population

ViolentCrimeTotal: The total of the violent crimes (Murder, Rape, Robbery, Assault

Murder: The number of Murders and Nonnegligent Manslaughters

Rape: Forcible Rapes

Robbery: Robberies

Assault: Aggravated Assults

PropertyCrimeTotal: The total of the property crimes (Burglary, Theft, Vehicle Theft)

Burglary: Burglaries

Theft: Larceny-Thefts

VehicleTheft: Motor Vehicle Thefts

Source

Originally: "https://ucrdatatool.gov/"", but that site does not work any more. Likely source for simi-
lar data: "https://www.fbi.gov/how-we-can-help-you/more-fbi-services-and-information/ucr/publications"

Examples

data(USCrimes)
## maybe str(USCrimes)

# plot time series/sparkline for each state
if(require(spData) && interactive()) {
data(state.vbm)
plot(state.vbm)

tmp.x <- state.vbm$center_x
tmp.x <- c( tmp.x[1:8], 147, tmp.x[9:43], 83, tmp.x[44:50] )
tmp.y <- state.vbm$center_y
tmp.y <- c( tmp.y[1:8], 45, tmp.y[9:43], -18, tmp.y[44:50] )
tmp.r <- range( USCrimes[,,'ViolentCrimeRate'], na.rm=TRUE)
for(i in 1:52) {
subplot( plot(1960:2010, USCrimes[i,,'ViolentCrimeRate'],

ann=FALSE, bty='n', type='l', axes=FALSE),
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tmp.x[i], tmp.y[i], size=c(0.2,0.2) )
}

}

## Gapminder style animation over time
if( interactive() ) {
x.r <- range( USCrimes[-c(9,45),,'Population'], na.rm=TRUE )
y.r <- range( USCrimes[-c(9,45),,'PropertyCrimeRate'], na.rm=TRUE )

tmpfun <- function(Year=1960, ... ) {
y <- as.character(Year)
plot( USCrimes[-c(9,45),y,'Population'],
USCrimes[-c(9,45),y,'PropertyCrimeRate'],
type='n', xlab='log Population',
ylab='Property Crime Rate',
main=y, xlim=x.r, ylim=y.r, log='x' )
text( USCrimes[-c(9,45),y,'Population'],

USCrimes[-c(9,45),y,'PropertyCrimeRate'],
state.abb, ... )

}

tmp.list <- list( Year=list('animate', from=1960, to=2010, delay=250) )

tmpcol <- c('blue','darkgreen','red','purple')[state.region]
tkexamp( tmpfun(col=tmpcol), tmp.list )
}

vis.binom Plot various distributions then interactivly adjust the parameters.

Description

Plot a curve of a distribution, then using a Tk slider window adjust the parameters and see how the
distribution changes. Optionally also plots reference distributions.

Usage

vis.binom()
vis.gamma()
vis.normal()
vis.t()

Details

These functions plot a distribution, then create a Tk slider box that allows you to adjust the param-
eters of the distribution to see how the curve changes.

Check boxes are available in some cases to also show reference distributions (normal and poisson
for the binomial, exponential and chi-squared for gamma, and normal for t). The exponential and
chi-squared distributions are those with the same mean as the plotted gamma.
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If you change the plotting ranges then you need to click on the ’refresh’ button to update the plot.

Value

These functions are run for their side effects and do not return anything meaningful.

Author(s)

Greg Snow <538280@gmail.com>

See Also

dnorm, dgamma, etc.

Examples

if(interactive()){
vis.binom()
vis.normal()
vis.gamma()
vis.t()
}

vis.boxcox Interactively visualize Box-Cox transformations

Description

Explore the Box-Cox family of distributions by plotting data transformed and untransformed and
interactively choose values for lambda.

Usage

vis.boxcox(lambda = sample(c(-1,-0.5,0,1/3,1/2,1,2), 1),
hscale=1.5, vscale=1.5, wait=FALSE)

vis.boxcoxu(lambda = sample( c(-1,-0.5,0,1/3,1/2,1,2), 1),
y, xlab=deparse(substitute(y)),
hscale=1.5, vscale=1.5, wait=FALSE)

vis.boxcox.old(lambda = sample(c(-1, -0.5, 0, 1/3, 1/2, 1, 2), 1))

vis.boxcoxu.old(lambda = sample(c(-1, -0.5, 0, 1/3, 1/2, 1, 2), 1))
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Arguments

lambda The true value of lambda to use.

y Optional data to use in the transform.

xlab Label for x-axis.

hscale The horizontal scale, passed to tkrplot.

vscale The vertical scale, passed to tkrplot.

wait Should R wait for the demo window to close.

Details

These functions will generate a sample of data and plot the untrasformed data (left panels) and the
transformed data (right panels). Initially the value of lambda is 1 and the 2 sets of plots will be
identical.

You then adjust the transformation parameter lambda to see how the right panels change.

The function vis.boxcox shows the effect of transforming the y-variable in a simple linear regres-
sion.

The function vis.boxcoxu shows a single variable compared to the normal distribution.

Value

The old versions have no useful return value. If wait is FALSE then they will return an invisible
NULL, if wait is TRUE then the return value will be a list with the final value of lamda, the original
data, and the transformed y (at the final lamda value).

Author(s)

Greg Snow <538280@gmail.com>

References

GEP Box; DR Cox. An Analysis of Transformations. Journal of the Royal Statitical Society. Series
B, Vol. 26, No. 2 (1964) 211-252

See Also

bct, boxcox in package MASS

Examples

if(interactive()) {
vis.boxcoxu()
vis.boxcox()
}
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vis.test Do a Visual test of a null hypothesis by choosing the graph that does
not belong.

Description

These functions help in creating a set of plots based on the real data and some modification that
makes the null hypothesis true. The user then tries to choose which graph represents the real data.

Usage

vis.test(..., FUN, nrow=3, ncol=3, npage=3, data.name = "", alternative)
vt.qqnorm(x, orig=TRUE)
vt.normhist(x, ..., orig=TRUE)
vt.scatterpermute(x, y, ..., orig=TRUE)
vt.tspermute(x, type='l', ..., orig=TRUE)
vt.residpermute(model, ..., orig=TRUE)
vt.residsim(model, ..., orig=TRUE)

Arguments

... data and arguments to be passed on to FUN or to plotting functions, see details
below

FUN The function to create the plots on the original or null hypothesis data

nrow The number of rows of graphs per page

ncol The number of columns of graphs per page

npage The number of pages to use in the testing

data.name Optional character string for the name of the data in the output

alternative Optional character string for the alternative hypothesis in the output

orig Logical, should the original data be plotted, or data based on the null hypothesis

x data or x-coordinates of the data

y y-coordinates of the data

type type of plot, passed on to plot function (use ’p’ for points)

model An lm object, or any model object for which fitted and resid return vectors

Details

The vis.test function will create a nrow by ncol grid of plots, one of which is based on the real
(original) data and the others which are based on a null hypothesis simulation (a statistical "lineup").
The real plot is placed at random within the set. The user then clicks on their best guess of which
plot is the real one (the most different from the others). If the null hypothesis is true for the real
data, then this will be a guess with a 1/(nrow*ncol) probability of success. This process is then
repeated for a total of npage times. A p-value is then constructed based on the number of correct
guesses and the null hypothesis that there is a 1/(nrow*ncol) chance of guessing correct each time
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(this will work best if the person doing the choosing has not already seen plots/summaries of the
data).

If the plotting function (FUN) is not passed as a named argument, then the first argument (in the . . . )
that is a function will be used. If no functions are passed then the function will stop with an error.

The plotting function (FUN) can be an existing function or a user supplied function. The function
must have an argument named "orig" which indicates whether to plot the original data or the null
hypothesis data. A new seed will be set before each call to FUN except when orig is TRUE. Inside
the function if orig is TRUE then the function should plot the original data. When orig is FALSE
then the function should do some form of simulation based on the data with the null hypothesis true
and plot the simulated data (making sure to give no signs that it is different from the original plot).

The return object includes a list with the seeds set before each of the plots (NA for the original data
plot) and a vector of the plots selected by the user. This information can be used to recreate the
simulated plots by setting the seed then calling FUN.

The vt.qqnorm function tests the null hypothesis that a vector of data comes from a normal distri-
bution (or at least pretty close) by creating a qqnorm plot of the original data, or the same plot of
random data from a normal distribution with the same mean and standard deviation as the original
data.

The vt.normhist function tests the null hypothesis that a vector of data comes from a normal
distribution (or at least pretty close) by plotting a histogram with a reference line representing a
normal distribution of either the original data or a set of random data from a normal distribution
with the same mean and standard deviation as the original.

The vt.scatterpermute function tests the null hypothesis of "no relationship" between 2 vectors
of data. When orig is TRUE the function creates a scatterplot of the 2 variables, when orig is FALSE
the function first permutes the y variable randomly (making no relationship) then creates a scatter
plot with the original x and permuted y variables.

The vt.tspermute function creates a time series type plot of a single vector against its index. When
orig is false, the vector is permuted before plotting.

The vt.residpermute function takes a regression object (class lm, or any model type object for
which fitted and resid return vectors) and does a residual plot of the fitted values on the x axis
and residuals on the y axis. The loess smooth curve (scatter.smooth is the plotting function) and
a reference line at 0 are included. When orig is FALSE the residuals are randomly permuted before
being plotted.

The vt.residsim function takes a regression object (class lm, or any model type object for which
fitted and resid return vectors) and does a residual plot of the fitted values on the x axis and
residuals on the y axis. The loess smooth curve (scatter.smooth is the plotting function) and
a reference line at 0 are included. When orig is FALSE the residuals are simulate from a normal
distribution with mean 0 and standard deviation the same as the residuals.

Value

The vis.test function returns an object of class htest with the following components:

method The string "Visual Test"

data.name The name of the data passed to the function

statistic The number of correct "guesses"
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p.value The p-value based on the number of correct "guesses"

nrow The number of rows per page

ncol The number of columns per page

npage The number of pages

seeds A list with 3 vectors containing the seeds set before calling FUN, the correct plot
has an NA

selected A vector of length npage indicating the number of the figure picked in each of
the npage tries

The other functions are run for their side effects and do not return anything meaningful.

Warning

The p-value is based on the assumption that under the null hypothesis there is a 1/(nrow*ncol)
chance of picking the correct plot and that the npage choices are independent of each other. This
may not be true if the user is familiar with the data or remembers details of the plot between picks.

Author(s)

Greg Snow <538280@gmail.com>

References

Buja, A., Cook, D. Hofmann, H., Lawrence, M. Lee, E.-K., Swayne, D.F and Wickham, H. (2009)
Statistical Inference for exploratory data analysis and model diagnostics Phil. Trans. R. Soc. A
2009 367, 4361-4383 doi: 10.1098/rsta.2009.0120

See Also

set.seed

Examples

if(interactive()) {
x <- rexp(25, 1/3)
vis.test(x, vt.qqnorm)

x <- rnorm(100, 50, 3)
vis.test(x, vt.normhist)

}
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z.test Z test for known population standard deviation

Description

Compute the test of hypothesis and compute confidence interval on the mean of a population when
the standard deviation of the population is known.

Usage

z.test(x, mu = 0, stdev, alternative = c("two.sided", "less", "greater"),
sd = stdev, n=length(x), conf.level = 0.95, ...)

Arguments

x Vector of data values or the mean of the data.

mu Hypothesized mean of the population.

stdev Known standard deviation of the population.

alternative Direction of the alternative hypothesis.

sd Alternative to stdev

n The sample size if x is the sample mean.

conf.level Confidence level for the interval computation.

... Additional arguments are silently ignored.

Details

Many introductory statistical texts introduce inference by using the Z test and Z based confidence
intervals based on knowing the population standard deviation. Most statistical packages do not
include functions to do Z tests since the T test is usually more appropriate for real world situations.
This function is meant to be used during that short period of learning when the student is learning
about inference using Z procedures, but has not learned the T based procedures yet. Once the
student has learned about the T distribution the t.test function should be used instead of this one
(but the syntax is very similar, so this function should be an appropriate introductory step to learning
t.test).

Value

An object of class htest containing the results

Note

This function should be used for learning only, real data should generally use t.test.

Author(s)

Greg Snow <538280@gmail.com>
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See Also

t.test, print.htest

Examples

x <- rnorm(25, 100, 5)
z.test(x, 99, 5)

zoomplot Zoom or unzoom an existing plot in the plot window

Description

This function allows you to change the x and y ranges of the plot that is currently in the plot window.
This has the effect of zooming into a section of the plot, or zooming out (unzooming) to show a
larger region than is currently shown.

Usage

zoomplot(xlim, ylim=NULL )
oldzoomplot(xlim, ylim=NULL )

Arguments

xlim, ylim The new x and y limits of the plot. These can be passed in in any form under-
stood by xy.coords. The range of xlim and ylim are actually used so you can
pass in more than 2 points.

Details

This function recreates the current plot in the graphics window but with different xlim, ylim argu-
ments. This gives the effect of zooming or unzooming the plot.

This only works with traditional graphics (not lattice/trellis).

This function is a quick hack that should only be used for quick exploring of data. For any serious
work you should create a script with the plotting commands and adjust the xlim and ylim parameters
to give the plot that you want.

Only the x and y ranges are changed, the size of the plotting characters and text will stay the same.

The oldzoomplot function is the version that worked for 2.15 and earlier, zoomplot should be used
for R 3.0.

Value

This function is run for its side effects and does not return anything meaningful.
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Note

For any serious projects it is best to put your code into a script to begin with and edit the original
script rather than using this function.

This function works with the standard plot function and some others, but may not work for more
complicated plots.

This function depends on the recordPlot function which can change in any version. Therefore this
function should not be considered stable.

Author(s)

Greg Snow <538280@gmail.com>

See Also

plot.default, par, matplot, plot2script, source

Examples

if(interactive()){

with(iris, plot(Sepal.Length, Petal.Width,
col=c('red','green','blue')[Species]))

text( 6.5, 1.5, 'test' )
zoomplot( locator(2) ) # now click on 2 points in the plot to zoom in

plot( 1:10, rnorm(10) )
tmp <- rnorm(10,1,3)
lines( (1:10) + 0.5, tmp, col='red' )
zoomplot( c(0,11), range(tmp) )
}

%<% Less than or Less than and equal operators that can be chained to-
gether.

Description

Comparison operators that can be chained together into something like 0 %<% x %<% 1 instead of
0 < x && x < 1.

Usage

x %<% y
x %<=% y

Arguments

x, y Values to compare
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Details

These functions/operators allow chained inequalities. To specify that you want the values between
two values (say 0 and 1) you can use 0 %<% x %<% 1 rather than 0 < x \&\& x < 1 .

Value

A logical vector is returned that can be used for subsetting like <, but the original values are included
as attributes to be used in additional comparisons.

Note

This operator is not fully associative and has different precedence than < and <=, so be careful with
parentheses. See the examples.

Author(s)

Greg Snow, <538280@gmail.com>

Examples

x <- -3:3

-2 %<% x %<% 2
c( -2 %<% x %<% 2 )
x[ -2 %<% x %<% 2 ]
x[ -2 %<=% x %<=% 2 ]

x <- rnorm(100)
y <- rnorm(100)

x[ -1 %<% x %<% 1 ]
range( x[ -1 %<% x %<% 1 ] )

cbind(x,y)[ -1 %<% x %<% y %<% 1, ]
cbind(x,y)[ (-1 %<% x) %<% (y %<% 1), ]
cbind(x,y)[ ((-1 %<% x) %<% y) %<% 1, ]
cbind(x,y)[ -1 %<% (x %<% (y %<% 1)), ]
cbind(x,y)[ -1 %<% (x %<% y) %<% 1, ] # oops

3
3
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mdtxtPlot (txtStart), 110
mdtxtSkip (txtStart), 110
mdtxtStart (txtStart), 110
mdtxtStop (txtStart), 110
mle.demo, 39
ms.arrows (ms.polygram), 41
ms.face (ms.polygram), 41
ms.female (ms.polygram), 41
ms.filled.polygon (ms.polygram), 41
ms.image, 89
ms.image (ms.polygram), 41
ms.male (ms.polygram), 41
ms.polygon (ms.polygram), 41
ms.polygram, 41, 45, 50
ms.sunflowers (ms.polygram), 41
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my.symbols, 42, 43, 50, 89

oldzoomplot (zoomplot), 124
outliers, 46

pairs, 49, 93
pairs2, 48
panel.dice (dice), 20
panel.my.symbols, 49
par, 7, 12, 15, 84, 89, 115, 125
persp, 64
petals, 51
plot, 33, 56
plot.default, 84, 125
plot.dice, 60
plot.dice (dice), 20
plot.window, 84
plot2script, 53, 125
plotFagan (fagan.plot), 30
plotFagan2 (fagan.plot), 30
points, 93
polygon, 41, 42
power.examp, 54
power.refresh (power.examp), 54
power.t.test, 55
predict, 103
Predict.Plot (TkPredict), 102
prepanel.dice (dice), 20
print.htest, 69, 124
prop.table, 10
prop.test, 58
put.points.demo, 55
Pvalue.binom.sim (Pvalue.norm.sim), 57
Pvalue.norm.sim, 57

qqnorm, 81

rasterImage, 42
rbeta, 14
recordPlot, 54
rexp, 14
rgl.coin, 58
rgl.die (rgl.coin), 58
rgl.Map, 60
rnorm, 14
roc.demo, 62, 67
roll.rgl.die (rgl.coin), 58
rotate.cloud, 63
rotate.persp (rotate.cloud), 63

rotate.wireframe (rotate.cloud), 63
run.ci.examp (ci.examp), 10
run.cor.examp, 64
run.cor2.examp (run.cor.examp), 64
run.hist.demo, 65
run.old.cor.examp (run.cor.examp), 64
run.old.cor2.examp (run.cor.examp), 64
run.power.examp (power.examp), 54
run.Pvalue.binom.sim (Pvalue.norm.sim),

57
run.Pvalue.norm.sim (Pvalue.norm.sim),

57
runif, 14, 80

sample, 21, 60
save, 71
savehistory, 54
SensSpec.demo, 66
set.seed, 9, 71, 122
shadowtext, 67
sigma.test, 69
simfun, 70
simulate, 71
sink, 113
slider, 40, 62, 66, 74, 78
sliderv, 76, 77
SnowsCorrectlySizedButOtherwiseUselessTestOfAnything,

79
SnowsPenultimateNormalityTest, 80
source, 54, 125
splinefun, 105
spread.labs, 82
squishplot, 83
steps, 85
stork, 87
str, 101
strsplit, 23
subplot, 15, 45, 50, 88
Sweave, 113
symbols, 45, 50, 89
Sys.time, 7

t.test, 11, 58, 124
table, 10
TeachingDemos (TeachingDemos-package), 3
TeachingDemos-package, 3
text, 68, 83
TkApprox, 91, 105
tkBrush, 92
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TkBuildDist, 94
TkBuildDist2 (TkBuildDist), 94
tkexamp, 58, 65, 67, 75, 76, 78, 96, 103
TkIdentify (dynIdentify), 24
TkListView, 101
TkPredict, 102
TkSpline, 92, 104
towork, 106
tree.demo, 107
triplot, 108
txtComment (txtStart), 110
txtSkip (txtStart), 110
txtStart, 110
txtStop (txtStart), 110

updateusr, 7, 114
USCrimes, 115

var.test, 69
vis.binom, 117
vis.boxcox, 6, 118
vis.boxcoxu, 6
vis.boxcoxu (vis.boxcox), 118
vis.gamma (vis.binom), 117
vis.normal (vis.binom), 117
vis.t (vis.binom), 117
vis.test, 81, 120
vt.normhist (vis.test), 120
vt.qqnorm (vis.test), 120
vt.residpermute (vis.test), 120
vt.residsim (vis.test), 120
vt.scatterpermute (vis.test), 120
vt.tspermute (vis.test), 120

wdtxtComment (txtStart), 110
wdtxtPlot (txtStart), 110
wdtxtSkip (txtStart), 110
wdtxtStart (txtStart), 110
wdtxtStop (txtStart), 110
within, 71

xtabs, 10

z.test, 11, 58, 123
zoomplot, 124
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